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T
he report by Worm and Tittensor
in PNAS (1) is a superb example
of using a macroecological ap-
proach to address an important

question that could not be answered in
any other way. In the late 1980s, Brian
Maurer and I wrote two papers that laid
the foundations for what has become
macroecology (2, 3). Nothing in science is
ever really new, and our papers and sub-
sequent books borrowed liberally from
earlier studies. We applied a statistical
mechanics approach to ecological systems,
and coined the term macroecology to
emphasize two senses of “macro.” The first
was an emphasis on large scales of space
and time in which ecology intersects with
biogeography and paleobiology. The sec-
ond was an emphasis on compiling and
analyzing large databases, and on drawing
inferences from patterns in the statistical
distributions of large numbers of equiva-
lent “ecological particles” such as in-
dividuals within populations or species
within communities. We saw macroeco-
logy not so much as an alternative to the
mostly small-scale experimental ecology
that was in vogue at the time, but as a
complementary approach that could be
used to address questions at scales at
which manipulative experiments are
not feasible. It was timely, and macro-
ecology has since taken off (4–7), in
large part because of its application to
investigate trends, correlates, causes,
and consequences of global environ-
mental change.
The past few years have seen increas-

ingly dire reports of overharvest of
ocean fisheries and collapse of marine
ecosystems (8–10). Much of the attention
has been on benthic fish and coastal
ecosystems, in which the changes have
been well documented because these
systems are relatively easy to study
(11–14). Of increasing concern and
some debate, however, is the status of
the large pelagic predators: tunas,
swordfish, marlins, and sharks (15–17).
These magnificent fish are highly prized
for the table and heavily fished. However,
their very biology makes it difficult to
quantify population trends and human
impacts. They occur at low densities
and range widely over great expanses of

open ocean (18). Data on abundance
and distribution are difficult to obtain,
and come largely from reported catches.
Enter Worm and Tittensor (1), who

used the spotty catch data to quantify
changes in the geographic ranges of 13
species of tunas and billfish from 1960 to
2000. The authors acknowledge the po-
tential pitfalls of using heterogeneous
data from catches, but they were able to
take advantage of the statistical power of
macroecology. They compiled data on
presence or absence in geographic grid
locations and plotted the results on global
maps to document convincing patterns
of change: significant range contractions
in nine species, significant expansions in
two others, and no detectable changes in
two species.
From a basic science perspective, two

aspects of the results are especially in-
teresting. First, these highly mobile pe-
lagic fish, which seem to have few “hard”
range boundaries except for coastlines,
have experienced substantial shifts in
geographic ranges rather than just in-
creasing or decreasing in abundance
throughout their ranges. This highlights a
very general relationship between abun-
dance (i.e., average local population
density) and geographic distribution (i.e.,
area of geographic range) among pelagic
marine species that was previously docu-
mented in terrestrial and freshwater or-
ganisms (19, 20). Second, the two species
that expanded their ranges are of relatively
small body size. This repeats another
pattern seen in terrestrial environments—
termed “mesopredator release”—whereby
small to medium-sized mammalian car-
nivores, such as raccoons, skunks, foxes,
and coyotes, have increased after humans
drastically reduced populations of large
predators, such as wolves and mountain
lions (21, 22).
Of at least equal importance, however,

are the implications of Worm and
Tittensor’s study (1) for marine conserva-
tion and fisheries management. The
authors are commendably cautious in re-
porting their results and addressing their
implications. The documented range con-
tractions are certainly consistent with
overharvesting. Billfish, tunas, and sharks
should be especially vulnerable to overf-

ishing. Because of their large body size,
they are commercially valuable, have
“slow” life histories, and require long
times for depleted stocks to recover (23,
24). In addition to fishing pressure, how-
ever, it will be important to consider
other possible causes for the range shifts,
such as changes in ocean conditions (e.g.,
temperature, acidification) and species
interactions (e.g., competition among
predators, availability of prey). Regardless
of the cause, the changes in geographic
ranges have serious implications. Most
of the contractions were around the edges
of the historic distributions, suggesting
that these areas are less suitable environ-
ments for the species. This, together
with the fact that populations have been
extirpated from substantial areas, means
that even if sound management policies
and catch regulations are implemented,
recovery of stocks may take longer than
if abundances had simply declined.
More generally, this study by Worm

and Tittensor (1) provides yet another
example of how humans are transforming
the earth on a truly global scale. Regard-
less of whether the documented range
shifts in tunas and billfish are caused by
direct impacts of fishing or by more in-
direct abiotic and biotic factors, there
can be little doubt that they are ultimately
caused by humans. The oceans, with
their vast expanse and immense volume,
might naively be expected to be buffered
from human impacts, but some of the
largest and most serious environmental
changes are occurring in the deep blue
waters far from land (8, 9, 25, 26). The
near-exponential increases in population
and resource use of our own species are
straining the finite ecological capacity of
our planet.
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