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a b s t r a c t

Marine phytoplankton account for approximately half of the production of organic matter on earth, sup-
port virtually all marine ecosystems, constrain fisheries yields, and influence climate and weather.
Despite this importance, long-term trajectories of phytoplankton abundance or biomass are difficult to
estimate, and the extent of changes is unresolved. Here, we use a new, publicly-available database of his-
torical shipboard oceanographic measurements to estimate long-term changes in chlorophyll concentra-
tion (Chl; a widely used proxy for phytoplankton biomass) from 1890 to 2010. This work builds upon an
earlier analysis (Boyce et al., 2010) by taking published criticisms into account, and by using recalibrated
data, and novel analysis methods. Rates of long-term chlorophyll change were estimated using general-
ized additive models within a multi-model inference framework, and post hoc sensitivity analyses were
undertaken to test the robustness of results. Our analysis revealed statistically significant Chl declines
over 62% of the global ocean surface area where data were present, and in 8 of 11 large ocean regions.
While Chl increases have occurred in many locations, weighted syntheses of local- and regional-scale
estimates confirmed that average chlorophyll concentrations have declined across the majority of the
global ocean area over the past century. Sensitivity analyses indicate that these changes do not arise from
any bias between data types, nor do they depend upon the method of spatial or temporal aggregation, nor
the use of a particular statistical model. The wider consequences of this long-term decline of marine phy-
toplankton are presently unresolved, but will need to be considered in future studies of marine ecosys-
tem structure, geochemical cycling, and fishery yields.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction (Antoine et al., 2005; Behrenfeld et al., 2006; Boyce et al., 2010;
Despite accounting for only 0.2% of global producer biomass,
marine phytoplankton account for 46% of annual primary produc-
tion (Field et al., 1998). Changes in marine phytoplankton biomass
or productivity may lead to corresponding changes in geochemical
cycles (Redfield, 1958), climate and weather (Murtugudde et al.,
2002), fisheries landings (Chassot et al., 2010; Ryther, 1969), and
the structure and dynamics of marine ecosystems (Chavez et al.,
2003; Richardson and Schoeman, 2004). Although there is mount-
ing evidence that marine phytoplankton concentration is changing
at the scale of ocean basins and possibly globally, there is consid-
erable debate regarding the direction and magnitude of change
Falkowski and Wilson, 1992; Gregg and Conkright, 2002; Gregg
et al., 2005; Mackas, 2011; McQuatters-Gollop et al., 2011;
Rykaczewski and Dunne, 2011; Venrick et al., 1987). This uncer-
tainty likely results in part from the lack of consistent, long-term
time series of estimates of phytoplankton concentration.

Changes in phytoplankton concentration have been inferred
from measurements of upper ocean chlorophyll concentration
(Chl; mg m�3; Venrick et al., 1987), transparency (Falkowski and
Wilson, 1992), visual estimates of ocean colour (Reid et al., 1998;
Wernand and van Der Woerd, 2010), and remotely-sensed water-
leaving radiances (Antoine et al., 2005; Behrenfeld et al., 2006;
Gregg and Conkright, 2002). Recent trends estimated primarily
from satellite data (<30 years) are strongly driven by transient cli-
mate fluctuations (Behrenfeld et al., 2006; Boyce et al., 2010; Cha-
vez et al., 2011; Martinez et al., 2009), and longer series are
required to resolve long-term trends (Beaulieu et al., 2013; Henson
et al., 2010). To overcome this limitation, several studies have
combined indices of phytoplankton concentration sampled over
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different time periods and from different observational platforms
(Antoine et al., 2005; Boyce et al., 2010; Gregg and Conkright,
2002; Gregg et al., 2003; Raitsos et al., 2005; Saulquin et al.,
2013). One such study combined shipboard measurements of
ocean transparency and in situ Chl and concluded that average sur-
face Chl had declined globally over the past century (Boyce et al.,
2010). These findings were questioned by others, primarily be-
cause of contrasting results from other proxies in some regions
(McQuatters-Gollop et al., 2011), and possible calibration issues
arising from the merging of two independent time series (Boyce
et al., 2011; Mackas, 2011; Rykaczewski and Dunne, 2011). These
criticisms were addressed in a follow-up study where time series
were calibrated against each other, and their accuracy was com-
pared against more recent satellite-derived measurements of sur-
face Chl (Boyce et al., 2012). This procedure removed any
potential bias introduced by merging of data types, and correlated
strongly (r = 0.81; ranged major axis slope = 1) with the indepen-
dently derived satellite record. In constructing this database we
also introduced a range of methodological advancements and sen-
sitivity analyses, which demonstrated the accuracy of the Chl mea-
surements. Here, we use this larger, and expanded database of Chl
measurements (Boyce et al., 2012) combined with newly devel-
oped analysis methods and robustness checks to provide new esti-
mates of long-term changes in global upper ocean Chl over the last
century.
2. Methods

2.1. Data

Due to the difficulty associated with direct enumeration of phy-
toplankton and in separating phytoplankton carbon from that con-
tained in other living and detrital particles, the measured
concentration of chlorophyll has been widely used as a first-order
indicator of the abundance and biomass of oceanic phytoplankton.
Despite variability in the phytoplankton Chl-to-carbon ratio (Geid-
er, 1987; Saba et al., 2010), Chl is still the most practical and exten-
sively used proxy of phytoplankton biomass over large spatial
scales (Antoine et al., 2005; Behrenfeld et al., 2006; Gregg and
Conkright, 2002; Gregg et al., 2005; Henson et al., 2010; Huot
et al., 2007; Montes-Hugo et al., 2009; Raitsos et al., 2005; Reid
et al., 1998).

We use a new and publicly-available database of integrated Chl
values collected via shipboard sampling platforms from 1890 to
2010 (details in Boyce et al., 2012). The database is only briefly de-
scribed here; full details of the data sources, temporal and geo-
graphic distribution, quality control and inter-calibration are
given in Boyce et al. (2012). It consists of measurements of ocean
transparency (derived from Secchi-depth measurements; ZD) and
colour (derived from the Forel-Ule color-matching scale; FU),
which were both calibrated against a large and comprehensive
database of quality-controlled in situ Chl measurements derived
from spectrophotometric or fluorometric analyses of seawater.
Since the calibration methods used to derive Chl values are sensi-
tive to the optical properties of the seawater, all near-shore mea-
surements (<20 m water depth or <1 km from the nearest
coastline) were removed from the database on the assumption that
these waters would likely contain significant concentrations of
other optically active constituents, that confound the optical detec-
tion of phytoplankton Chl. Statistical techniques were used to iden-
tify erroneous measurements; these were corrected or removed
from the database.

This database (details in Boyce et al., 2012) has been expanded
and improved over a previous version (used by Boyce et al., 2010),
in a variety of ways, including:
(1) The number of individual measurements, and the temporal
and spatial coverage of the database has considerably
increased, despite the use of more stringent quality control
methods.

(2) Transparency values in the database were calibrated directly
against a large number of quality-controlled in situ Chl mea-
surements (n = 12,841); this is a large increase over the
number of matchups used to calibrate globally distributed
remotely sensed water-leaving radiance values from the
Coastal Zone Colour Scanner (CZCS; n = 60) or the Sea-view-
ing Wide Field-of-view Sensor (SeaWiFS; n = 2, 853; Evans
and Gordon, 1994; O’Reilly et al., 2000), and ensures that
our calibration equations accurately represent in situ Chl
concentrations.

(3) A range of new statistical methods (i.e. spatial filters) were
developed to identify potential outlying or implausible Chl
measurements in the database, and to subsequently remove
or correct them. A range of Chl depth interpolation methods
were also explored to verify the assumption that the mean
Chl over 20 m was the appropriate metric.

(4) Measurements in the database were subjected to a number
of additional post-calibration analyses testing their quality,
precision, and robustness (Boyce et al., 2012). This included
testing their accuracy against widely used remote sensing
estimates of Chl. These analyses indicated that the Chl val-
ues in this database are strongly correlated with Chl from
SeaWiFS (r = 0.81; ranged major axis slope = 1) on log–log
scales. The larger number of matchups and strong corre-
spondence with remote sensing measurements attest to
the improved quality of the integrated Chl database (see
Boyce et al., 2012 for further details).

Prior to our trend analyses, sensitivity analyses were under-
taken to ensure that merging in situ, color, and transparency-de-
rived Chl measurements would not bias the results of subsequent
trend analyses. These sensitivity analyses suggested that Chl
trends derived from Forel-Ule ocean colour measurements were
atypical. Changes in Forel-Ule ocean color determinations are not
sensitive to small changes in Chl observed in oligotrophic (blue)
waters (FU < 2) where the optical properties of pure water domi-
nate, or in mesotrophic (green or brown) waters where other par-
ticles and dissolved substances are significant (FU > 10).
Oligotrophic blue waters contain the lowest Chl concentrations
globally and are widely distributed. Because the validity of these
values could not be confirmed and to avoid any potential bias,
we removed all FU-derived Chl values prior to the trend analysis.
The resulting database used here (Table 1) contains 451,383 cali-
brated Chl values, is globally distributed, and spans over a century
(1890–2010). Despite this, the measurements are sparse in many
areas, particularly in the Southern hemisphere, and prior to 1950.

2.2. Statistical analyses

Inter-annual changes in average Chl are often small relative to
the naturally-occurring variability. For instance, stochastic natural
disturbances can drive large transient Chl changes over days to
weeks (Hamme et al., 2010), intra-annual Chl variability can span
several orders of magnitude in some locations, and inter-annual
to decadal climate fluctuations can induce 20-fold changes in Chl
over varying time intervals (Barber and Chavez, 1986). Detection
of any long-term trends that may underlie this large variability re-
quires powerful and flexible analysis tools. Hence, we estimated
changes in Chl over time using generalized additive models
(GAMs). GAMs are an extension of widely-used generalized linear
models, but enable the estimation of both linear trends as well
as non-monotonic responses, (i.e. seasonal cycles) within the same



Table 1
Data sources used to estimate Chlorophyll time trends.

Parameter Symbol Source N Time span Website

Chlorophyll ChlI WOOD 5315 1900–2003 www.wood.jhuapl.edu/wood/
Chlorophyll ChlI NODC 155,493 1934–2010 www.nodc.noaa.gov/
Chlorophyll ChlI ICES 20,532 1933–2010 www.ices.dk/indexfla.asp
Transparency ZD WOOD 22,266 1903–2008 www.wood.jhuapl.edu/wood/
Transparency ZD NODC 128,988 1899–2007 www.nodc.noaa.gov/
Transparency ZD ICES 17,432 1903–1998 www.ices.dk/indexfla.asp
Transparency ZD MIRC 101,053 1923–1998 www.mirc.jha.jp/en/outline
Transparency ZD BIDA 304 1890–1898 links.baruch.sc.edu/

Table 2
Specification of effects to explain Chl variability (includes linear, discrete, and functional GAM effects according to type of variability explained). The ensemble model set
contained different combinations of covariates. The full model contained one effect from each category of variability explained (column 1); the minimum model contained only
one effect of inter-annual variability. b are linear and f are functional model effects.

Variability explained Effect specification Basis function Dimension

Inter-annual b(year) NA NA
b(factor(year)) NA NA
f(year) Cubic 10

Intra-annual f(day) Cyclic 5
f(day � factor(space)) Cyclic 5
f(day x time) Tensor product 5,3
f(factor(month)) NA NA

Nutrient re-suspension f(bathymetry) Cubic 4
Land-based deposition f(coast distance) Cubic 4

f(coast distance � factor(time)) Cubic 4
Spatial f(longitude � latitude) Thin plate Estimated

f(longitude) Cubic Estimated
f(latitude) Cubic Estimated
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model framework (Hastie and Tibshirani, 1986). In contrast to
more traditional approaches, GAMs do not require the assumption
of a fixed functional form (linear or otherwise), hence more com-
plex (i.e. cyclical or bi-modal) dynamics can be captured.

As an additional improvement, we employed GAMs within a
multi-model framework (Burnham and Anderson, 2002). This ap-
proach uses information theory to rank and/or average across a
set of statistical models. By eliminating the reliance on a single
model, the robustness of the model inference is improved in much
the same way as ensemble forecasts do for meteorological or
climate projections. The advantages of this approach are consider-
able. The GAM approach enables Chl to vary as a linear or non-
linear function of our model covariates, while accounting for the
non-normality, as well as the spatial and temporal dependence of
Chl measurements. The multi-model approach enabled us to allow
for a very diverse array of dynamics to explain Chl variability at dif-
ferent ocean locations. For instance, our ensemble models allowed
for the strength (magnitude) and nature (linear or smooth) of some
important model effects, such as seasonality, or coastal distance to
vary across space and through time.

As a first step in the analysis, an ensemble of competing GAM
models to explain Chl variability in the upper oceans was selected.
The ensemble model set was relatively small (maximum of 20–39
models) and defined a priori according to current knowledge of
which factors influence Chl. All ensemble models were estimated
from the raw Chl data. Since we were interested in determining
the rate of Chl change over time, all ensemble models contained
an effect to explain inter-annual Chl variability. In addition to this,
most ensemble models included effects to explain variability in Chl
related to the location of measurements, the day of the year, water
depth, and distance from the shore. Thus the general form of the
GAMs used to estimate trends was as follows:

gðl̂iÞ ¼ b0 þ byearyeari þ b1x1;i þ f1ðx2;iÞ þ f2ðx3;ix4;iÞ þ ei ð1Þ

where i are the individual observations, g is the monotonic link
function of the expected mean Chl concentration l̂i; yeari; x1; x2; x3,
and x4 are predictor variables, b0 is the model intercept, b denotes
parametric and f denotes functional effects estimated from the data,
and ei represents the residual error term. The functional effects are
continuous, smooth curves which can more closely track the re-
sponse data, and thus accommodate a wide array of response
functions ranging from linear to multi-modal (Wood, 2003, 2004,
2006). The predictors (x) in the above example may be spatial (i.e.
longitude, latitude, bathymetry) or temporal (i.e. day of the year,
decade) variables explaining Chl variability (Table 2). All ensemble
models contained byear, which is a parametric effect capturing the
long-term trend in average Chl. For all models we assumed a
gamma-distributed error structure ðl̂i � GammaÞ and a log link
ðgðl̂iÞ � lnðl̂iÞÞ; alternate distributions and link functions were
fitted but did not perform as well. Using this method, we were able
to estimate the average rate of Chl change over time while
accounting for underlying aspects of Chl variability. Further, be-
cause the influence of the model covariates on the mean response
is through the logarithmic link function such that g(byear) = ebyear ,
the estimated rate of Chl change over time was retrieved on a linear
response scale (mg m�3 yr�1). All model assumptions, including
spatial and temporal dependence were verified by analysis of the
model residuals.

All GAMs were fitted to the data using penalized likelihood
approximation by penalized iteratively re-weighted least squares
(Wood, 2006). The smoothing parameters used to scale the likeli-
hood penalty of all functional effects were estimated by general-
ized cross-validation. To prevent over-fitting the influence of the
effective degrees of freedom on estimation of functional effects
was inflated by a factor of 1.4 (Kim and Gu, 2004). The basis dimen-
sions of the functional effects were estimated a priori such that any
patterns in the residuals as a function of the functional predictor
variables could not be explained by them. More information on
the theory and technical aspects of GAMs can be found in, for
example Hastie and Tibshirani (1986), Walsh and Kleiber (2001),
Wood (2006), Litzow and Ciannelli (2007), while details and exam-
ples on their implementation in an oceanographic context may
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found in, for example Bigelow et al. (1999), Irwin and Finkel
(2009), and Polovina et al. (2008).

The Bayesian information criterion (BIC) was calculated for each
individual model within the ensemble (Schwarz, 1978) to evaluate
its parsimonious performance. BIC is an information theoretic-
based goodness of fit statistic and takes into account model fit,
complexity, and sample size,

BIC ¼ �2 ln½LðhpjyÞ� þ p � lnðnÞ ð2Þ

where n is the sample size, L(hp|y) are the likelihood estimates of the
model parameters hp, given the data y, and p is the number of free
parameters estimated by the model. Normalized multi-model
weights for each ensemble model (wm) were then calculated as,

wm ¼
exp � 1

2Dm

� �
PR

m¼1 exp � 1
2Dm

� � ð3Þ

where R represents the total number of models fit, and

Dm ¼ BICm � BICmin:

Here BICm is the BIC score for model m, and BICm is the minimum
(top ranking) BIC score in the ensemble model set. The ‘best’ model
was selected from the ensemble according to the information-the-
oretic weights (wm, Eq. (3)), with byear,B extracted as the ‘best’ model
estimated rate of Chl change over time. This approach selects the
model containing the largest amount of ‘information’ (Burnham
and Anderson, 2002; Burnham, 2004).

To determine how sensitive the estimated rate of change was to
the model selection process, multi-model averaged estimates of
Chl change over time were derived as follows,

�byear;MM ¼
XR

m¼1

wmbyear;m ð4Þ

where �byear;MM is the multi-model ensemble-averaged parameter
estimate of the rate of Chl change over time, wm are the model
weights, and byear,m are the estimates of the rate of Chl change over
time for each model.

2.2.1. Estimating trends across spatial scales
We estimated rates of Chl change at local, regional, and global

spatial scales, using un-weighted and weighted analysis methods.
For the regional analyses Chl change was also estimated as linear,
discrete, and smooth functions of time. This was done to evaluate
robustness; estimates of change should be relatively insensitive to
the use of different statistical methods and assumptions.

To resolve spatial patterns of Chl change, local-scale trends
were estimated for individual 10� � 10� cells that contained ade-
quate data. It has been suggested that a continuous Chl series span-
ning at least 27 (Beaulieu et al., 2013) to as many as 40 years
(Henson et al., 2010) is required to separate long-term trends from
shorter-term climate-driven fluctuations, with series length vary-
ing by ocean region. Hence we restricted our analysis to cells
where the temporal range of measurements spanned at least
35 years. We also excluded cells containing <25 individual mea-
surements or <5 individual years with measurements. The remain-
ing database contained n = 280 individual 10� � 10�cells with
sufficient data. For each cell, up to 39 candidate models were fitted
to the available data. From this ensemble model set, a multi-model
average rate, and a best-model rate of Chl change were estimated
(see above, Eqs. ()()()(2)–(4)). We calculated the proportion of
10� � 10� cells containing declining or increasing time trends in
Chl and estimated 95% confidence intervals about the proportions
using the Wilson method (Wilson, 1927).To estimate Chl trends at
the ‘regional’ scale of ocean basins, the data were aggregated into
11 large regions which exhibit similar variability in Chl in response
to seasonality and inter-annual to decadal climate variability
(Behrenfeld et al., 2005; Boyce et al., 2010). Although 10 regions
were initially selected, observed discontinuities in the Chl response
between the eastern (>20�W longitude) and western (<20�W longi-
tude) North Atlantic region led us to further subdivide this basin
(see local and regional model results below for further details).

To capture the range of potential Chl trajectories over time, re-
gional trends were estimated from GAMs as linear functions of
time (on a log scale) in three different ways: as (1) continuous (lin-
ear trend), (2) discrete (decadal average estimates), and (3) smooth
functions of time (functional trend). This approach allows both the
quantitative (rate) and qualitative (shape) characteristic of trends
to be estimated while accounting for the influence of the model
covariates.

Rates of Chl change for each region were also determined by
aggregating the local 10� � 10� estimates. Individual local scale
estimates were heterogeneous in both the uncertainty of individ-
ual estimates, as well as the geographic area encompassed by
them; statistical weighting methods were used to account for this
heterogeneity. For each local estimate, statistical weights were cal-
culated, taking account the sampled area, and the uncertainty
weights. Standardized area weights (warea(c,r)) were derived for
each 10� � 10� cell (c) within each region (r),

wareaðc;rÞ ¼
Ac;r

AmaxðrÞ
ð5Þ

where Acr is the convex polygon area of all measurements in cell c
within region r and Amax(r) is the maximum convex polygon area
of all cells within region r. Standardized estimates ofuncertainty
weights (wuncertainty(c,r)) were calculated for each cell (c) within each
region (r),

wuncertaintyðc;rÞ ¼
CVc;r

CVmaxðrÞ

� ��1

ð6Þ

where CVc,r is the coefficient of variation of cell c within region r,
and CVmax(r) is the maximum coefficient of variation of all cells
within region r. Coefficient of variation values were calculated using
the estimated rates of Chl change and standard errors. Using this
method, local estimates encompassing larger geographic areas
and possessing less uncertainty are allocated greater statistical
weight. Weighted mean rates of Chl change for each region ð�brÞ
were estimated as

�br ¼
Pn

c¼1wc;rbc;rPn
c¼1wc;r

ð7Þ

where wc,r are the weights derived as the average of warea(c,r) and
wuncertainty(c,r), and bc,r are local estimates for change for cell c within
region r.Global rates of Chl change were then derived by indepen-
dently averaging local or regional estimates using the statistical
weighting methods (Eqs. (5)–(7)).

Finally, to determine the sensitivity of the estimated trends to
the merging of transparency- and in situ-derived Chl measure-
ments (ChlT and ChlI, respectively), model II major axis regression
models were fitted to matched (1� � 1� �month � year) ChlT and
ChlI measurements within each 10� � 10� cell (Legendre and
Legendre, 1998; Sokal and Rohlf, 1995). The estimated slope
parameter from the model (bbias) corresponds to the average
change in ChlT for each unit of ChlI increase and is estimated as

bbias ¼
s2

T � s2
I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

T � s2
I Þ

2 þ 4ðsITÞ2
q

2sIT
ð8Þ

where s2
I and s2

T , are the estimated variances of ChlI and ChlT, respec-
tively, and s2

IT is their estimated covariance (Legendre and Legendre,
1998; Sokal and Rohlf, 1995).
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3. Results

3.1. Local trends

When considering the 280 10� � 10� cells with sufficient data
for long-term trend analysis, 57.2% (95% Wilson score confidence
interval: 51.3–62.8%) showed declining Chl trends; this proportion
increased to 60.1% (95% CI: 52.5–67.2%) when only statistically sig-
nificant trends were considered (Fig. 1A; Table 3). When all 348
available cells were considered irrespective of their trend length,
56.6% showed declining trends. This finding was robust to the esti-
mation of changes using different subsets of the complete Chl data-
base, or when considering all available trends or only statistically
significant trends (Table 3). On an area basis, Chl declines were ob-
served over 58.4% of the global ocean surface area where adequate
data permitted trend analysis; this proportion increased to 62.1%
when considering only areas where the rate of change was statis-
tically significant.

The rate of Chl decline increased with distance from the nearest
coastline (Fig. 1B). Weighted linear regression of available local
trends (n = 280) as a function of distance from the nearest coastline
yielded a negative trend, that was marginally non-significant
(�4 � 10�6 mg m�3 yr�1 km�1; P = 0.06). When considering only
statistically significant local-scale estimates of Chl change this
relationship became stronger and statistically significant
(�7 � 10�6 mg m�3 yr�1 km�1; P = 0.04; n = 168). This general
pattern was also observed when Chl changes were independently
A

C

Fig. 1. Local-scale phytoplankton trends. (A) Estimated instantaneous linear rate of Ch
change over the available time series. Cells bordered in black denote statistically significa
Chl change in each 10� � 10 cell as a function of distance from the nearest coastline (km)
from a weighted linear model; shaded area is the 95% confidence interval; dashed line rep
in Chl (D) Weighted mean Chl changes estimated by aggregating local estimates with
individual local estimates. The weighted mean rates of Chl change are depicted as black
confidence limits about the means. The colours of the raindrops depict the number of cells
each region. Black and green tick marks on the axes represent the individual rates or pr
estimated from in situ or transparency derived Chl data, or using
only measurements collected since 1950. Estimating local-scale
rates of change separately using measurements collected in shelf
(<200 m depth) or oceanic (>200 m depth) waters also suggested
greater rates of Chl decline in remote open ocean waters (Table 3).

Despite the overall decline in Chl observed, statistically signifi-
cant increases were observed in 39.9% of cells and (or 38.0% of the
ocean surface) where adequate data permitted trend analysis.
Clusters of increasing cells were observed in the temperate North
Pacific, in the Northeast Atlantic, and across the subtropical warm
pool (Fig. 1A). Although rates of Chl increase were greater in waters
closer to the shorelines (Fig. 1B), there was no change in the pro-
portion of cells containing increasing Chl trends in coastal
(<200 m depth; 59.6%) or oceanic (>200 m depth; 60.3%) waters.

Estimated rates of Chl change were larger and more variable in
the Southern Hemisphere, likely as a function of limited data avail-
ability. Spatial examination of the strength of inference for the
main model effects suggested the seasonal effects were of large
importance in most cells, but were especially significant in the
Northern Hemisphere and in the Atlantic Ocean. Spatial effects
were dominant in the tropical Pacific Ocean (20�N to 20�S), where
seasonal effects were weaker.

When all local estimates were aggregated by ocean region
(n = 11; Fig. 1C) using statistical weighting methods (Eqs. (5)–(7)),
declining trends were observed in 8 of 11 regions; five of those were
statistically significant (Fig. 1D). The largest rates of decline were
observed in the Atlantic, the South Indian, and the Southern Ocean
B

D

l change in each 10� � 10 cell (n = 280). Color coding indicates the average rate of
nt rates of change (P < 0.05) and white cells indicate cells with insufficient data. (B)

. Colours indicate the ocean where the cell was located. Solid trend line was derived
resents no change in Chl. (C) Ocean regions (n = 11) used to estimate regional trends
in each region. Shapes (‘Raindrops’) represent the probability distribution of the
vertical lines, and the width of the raindrops and gray horizontal lines are the 95%
within each region. Green vertical lines are the proportion of increasing cells within

oportions of change, respectively. Dashed line represents no change.



Table 3
Summary statistics from local-scale estimates of Chl change estimated from different data sets. N cells are the number of 10� � 10� cells,% declining is the proportion of all cells
that contain declining trends, weighted mean rate are the average weighted rates of Chl change (mg m�3 yr�1), Mean rate is the arithmetic mean rate of Chl change, 95% CI are the
confidence intervals for the weighted and average rates of change, N/cell is the median number of measurements per cell, year span is the years spanned by all data.

Measurements Used N cells % Cells declining Weighted mean rate ±95% CI Mean rate ±95% CI N/cell Year span

All trends
ALL 280 0.57 �0.0023 0.001 �0.0039 0.042 321 1890–2010
1950 Onward 254 0.55 �0.0026 0.002 �0.0040 0.046 311 1951–2010
Truncated 252 0.58 �0.0016 0.001 �0.0029 0.032 336 1890–2010
ChlT 153 0.51 0.0002 0.001 0.0004 0.030 329 1890–2008
ChlI 147 0.48 �0.0036 0.003 �0.0051 0.069 194 1900–2010
Shelf (<200 m depth) 72 0.58 0.0000 0.002 �0.0038 0.030 474 1891–2010
Oceanic (>200 m depth) 208 0.57 �0.0031 0.001 �0.0040 0.046 268 1890–2010

Significant trends
ALL 168 0.6 �0.0032 0.001 �0.0063 0.053 478 1890–2010
1950 Onward 152 0.57 �0.0038 0.002 �0.0069 0.058 433 1951–2010
Truncated 137 0.63 �0.0026 0.001 �0.0042 0.039 527 1890–2010
ChlT 91 0.51 0.0005 0.002 0.0015 0.037 445 1890–2008
ChlI 92 0.55 �0.0061 0.004 �0.0095 0.085 291 1900–2010
Shelf (<200 m depth) 47 0.6 0.0000 0.003 �0.0052 0.036 809 1891–2010
Oceanic (>200 m depth) 121 0.6 �0.0046 0.002 �0.0067 0.058 434 1890–2010

Fig. 2. Temporal trajectories of phytoplankton. Estimates of relative Chl as a discrete (square points), log-linear (lines), and smooth (dotted lines) function of temporal
variability in each region (n = 11). Tick marks on the x-axis represent the availability of data through time. The color of tick marks and points represents the scaled number of
observations available in each year (tick) and decade (point). Shaded areas represent approximate 95% Bayesian credible limits around each log-linear trend. The magnitudes
of predicted Chl are not exact, but rather representations which depend on the values of the model covariates selected for prediction.
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A

B

Fig. 3. Regional-scale phytoplankton trends. (A) Estimated instantaneous linear
rate of Chl change in each of 11 ocean regions. Colors indicate rate of change; yellow
and red are increasing regions, blue are declining regions. (B) Chl changes estimated
for each region (points), with 95% confidence intervals (gray lines). Individual
estimates are displayed as tick marks on the x-axis. Colors depict the standardized
statistical weight used in the derivation of the global average for each region.
Dashed line represents no change.

A

B

Fig. 4. Average global phytoplankton change. (A) Shaded areas represent the
standardized kernel density distribution of individual local (gray) and regional (red)
scale estimates of Chl change. Tick marks on the x-axis are the values of the
individual estimates of change. Dashed line represents no change. (B) Globally
averaged rates of Chl change estimated using local and regional scale estimates.
Global rates of change were calculated as un-weighted (triangle points) and
weighted (square points); random-effects were assumed. Horizontal lines are the
95% confidence limits around the mean rates; dashed line represents no change.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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region. Conversely, the Northeast Atlantic and South Pacific showed
increasing trends and the equatorial Pacific region appeared
approximately stable. Estimates of change in the Southern hemi-
sphere regions were found to be more variable and uncertain than
elsewhere. The proportion of declining cells was also greater than
50% in 9 of 11 regions, with the largest proportional declines in
Atlantic and North Indian regions (Fig. 1D). The proportional
changes of cells within each region was similar to weighted aver-
ages rates, except for the Southern Pacific and Southern regions,
where the number of cells and measurements were small and esti-
mates of change were variable (Fig. 1D).
Table 4
Regional-scale estimates of Chl change. Estimate, SE, and P-value are the instantaneous li
change.% per Year and% are the Chl change per year and total% change, reported as a pro
individual models, Area is the maximum polygon area encompassed by the available data (

Region Estimate SE P-value % yr�1

Arctic �0.0047 0.001 <0.0001 �0.37
NW Atlantic �0.0096 0.0005 <0.0001 �0.62
NE Atlantic 0.0058 0.0002 <0.0001 0.84
E Atlantic �0.0035 0.0009 0.0001 �0.29
S Atlantic �0.0036 0.0015 0.0164 �0.31
N Indian �0.0021 0.0009 0.0208 �0.19
S Indian 0.0045 0.0008 <0.0001 0.58
N Pacific �0.0005 0.0001 <0.0001 �0.04
E Pacific �0.002 0.0002 <0.0001 �0.18
S Pacific 0.0066 0.0018 0.0002 0.78
Southern �0.0098 0.0017 <0.0001 �0.61
3.2. Regional trends

Chl trajectories estimated as discrete, linear, or smooth func-
tions of time suggested strong fluctuations in average Chl concen-
trations superimposed on long-term linear trends (Fig. 2), with
most trajectories declining over the last 60 years. Again, estimated
Chl trends were more uncertain in the Southern Hemisphere re-
gions and over earlier time periods, likely as a function of limited
data availability. Estimated smooth Chl trajectories are strongly
influenced by data-poor years and decades, possibly explaining
the large fluctuations over the pre-1950 period (Fig. 2). With the
exception of the Pacific regions, Chl was observed to initially
near rate of Chl change (mg m�3 yr�1), standard errors, and P values for the rates of
portion of the initial value, Deviance is the proportion of deviance explained by the

km2 � 104) and N/Year is the average number of measurements available in each year.

% Deviance Area Year span N/yr�1

�39.2 35 177 1899–2005 111
�61.4 48 295 1911–2010 781
100.8 45 183 1890–2010 730
�28.1 65 384 1911–2008 190
�28.5 43 299 1911–2003 60
�19.4 59 196 1895–1997 84

61.5 76 760 1900–2006 131
�4.1 52 478 1907–2009 2842
�18.2 78 964 1907–2008 475

38.2 69 565 1956–2005 53
�64.7 40 336 1900–2006 89
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Fig. 5. Sensitivity and robustness analyses. (A) The absolute estimated rate of Chl change for each 10� � 10� cell is plotted as a function of trend length. Colors represent the
number of measurements in each cell. The relationship was best approximated by a generalized linear model (l̂i � Gamma and gðl̂iÞ � lnðl̂iÞ; solid line); Shaded area depicts
the confidence limits. (B) Rates of Chl change estimated by multi-model averaging plotted against best-model estimates for each 10� � 10� cell. Gray lines are the 95%
confidence intervals for the estimates; dashed line represents idealized relationship (slope = 1, intercept = 0). Solid line is the model II regression fit (r = 0.99; P < 0.0001). Inset
displays the same relationship for regional estimates. (C) Difference between multi-model averaged and best model rates of Chl change as a function of log sample size for
each 10� � 10� cell. The relationship was approximated by a generalized linear model (l̂i � Poisson and gðl̂iÞ � lnðl̂iÞ; solid line); shaded area depicts the 95% confidence
interval. Colours represent the distance of the cell to the nearest coastline. Inset displays the same relationship for regional estimates. (D) Estimated rates of change from all
data plotted as a function of the average difference (model II major axis linear regression slope; Eq. (8)) between Chl data types for each 10� � 10� cell. Fitted line represents
the relationship estimated from a model II linear regression. Colour depicts the ocean where trends were estimated. (E) Probability distribution of log-transformed ChlI (red)
and ChlT (blue) measurements estimated as a kernel density function. Area under each curve sums to 1. Tick marks represent the exact Chl values. (F) Rates of Chl change
estimated using truncated data as a function of changes estimated from all available data for each 10� � 10� cell. Gray lines are the 95% confidence intervals for the estimates;
solid line represents slope from a model II regression fitted to the data (r = 0.7; p < 0.0001). Dashed line represents idealized relationship (slope = 1, intercept = 0). Inset is the
same relationship for regional estimates.
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increase before undergoing prolonged decline. Most of these initial
increases predated 1950, and appeared to be driven by a relatively
small number of data points.

Estimates of change within large ocean regions described previ-
ously (Fig. 1C), indicated statistically significant Chl decline in 8 of
11 regions (Fig. 3A and B; Table 4). The largest instantaneous rates
of decline were observed in the Southern Ocean (�0.0098 ±
0.0033 mg m�3 yr�1; P < 0.001), Northwest (�0.0096 ± 0.001
mg m�3 yr�1; P < 0.001), Arctic (�0.0046 ± 0.002 mg m�3 yr�1;
P < 0.001), South (�0.0036 ± 0.0029 mg m�3 yr�1; P < 0.001), and
equatorial (�0.0035 ± 0.0018 mg m�3 yr�1; P < 0.001) Atlantic and
regions (instantaneous rate of change and 95% confidence interval).
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Statistically significant rates of increase were observed in the
Northeast Atlantic (0.0045 ± 0.0016 mg m�3 yr�1; P < 0.001), South
Indian (0.0058 ± 0.0004 mg m�3 yr�1; P < 0.001), and South Pacific
(0.0066 ± 0.0005 mg m�3 yr�1; P < 0.001) regions. When extrapo-
lating over the available trend length, these rates correspond to
substantial cumulative upper ocean Chl changes. When calculated
from the annual proportional changes (Table 4), the largest cumu-
lative proportional declines were observed in the Northwest Atlan-
tic (�61.4%), Southern (�64.7%), and Arctic (�39.2%) regions
(Table 4). Smaller declines were calculated for the equatorial Atlan-
tic (�28.1%) and South Atlantic (�28.5%), North Indian (�19.4%),
North (�4.1%) and equatorial Pacific (�18.2%) regions. Large in-
creases were extrapolated for the Northeast Atlantic (+100.8%),
South Indian (61.5%) and South Pacific (38.2%) regions. These rates
of change may be exaggerated for regions where data availability is
low such as the Southern Ocean. In such instances, rates of change
could be inflated due to the influence of measurements taken in
more recent, data-rich decades.

3.3. Global trends

When aggregated globally, both local and regional scale esti-
mates of change were approximately Gaussian distributed
(Fig. 4A). Using statistical weighting methods to account for differ-
ences in the uncertainty and spatial coverage of estimates, we ob-
served globally declining Chl trajectories. Synthesis of local
estimates revealed, in aggregate, a statistically significant global
Chl decline of �0.0066 ± 0.001 mg m�3 yr�1 (random-effects
weighted mean and 95% confidence interval). This finding was
insensitive to the use, or method, of weighting (Fig. 4B). Synthesis
of available regional estimates suggested that the global rate of
change was smaller and not statistically significant
(�0.0009 ± 0.0027 mg m�3 yr�1). The global rate of change derived
from regional estimates was sensitive to the splitting of the North
Atlantic region; when analyzing the North Atlantic as a whole, the
global rate was greater and statistically significant
(�0.0029 ± 0.0025 mg m�3 yr�1).

3.4. Sensitivity and robustness analyses

Analyses of all available 10� � 10� cells suggested that as the
length of the available Chl time series decreases, the estimates of
change become larger and more uncertain (Fig. 5A). This supports
the contention that Chl trends estimated over shorter timescales
are strongly influenced by decadal-scale climate oscillations and
may not necessarily represent long-term trends (Henson et al.,
2010; Martinez et al., 2009). However, since sample size also co-
varies with trend length, it is possible that the larger magnitude
and uncertainty of estimates may be driven by data density, not
just total time span. The estimated rates and patterns of Chl change
at local scales were broadly insensitive to model specification, or
the spatial resolution chosen (changes within 5� � 5� cells were
also estimated). The proportion of declining cells and average glo-
bal rate of Chl change were largely unchanged.

To determine the sensitivity of our analysis to model averaging,
the estimates of Chl change over time from best models (byear,B)
were compared against those derived from multi-model averaging
(�byear;MM; Fig. 5B). In almost all instances, �byear;MM and byear,B were
identical in direction, but differed slightly in magnitude. The
�byear;MM estimates were generally smaller than byear,B estimates
and the differences between them tended to increase with decreas-
ing sample size (Fig. 5C). However, since differences between
�byear;MM and byear,B were small and because the statistical theory
underlying single model selection is more robust, byear,B was used
as the metric of Chl change. The overall results were insensitive
to the use of �byear;MM or byear,B.
Several analyses were performed to determine the sensitivity of
the estimated trends to the blending of Chl measurements col-
lected from different sampling platforms. It has been suggested
that since the transparency- and in situ-derived Chl values are
available over different time periods, any systematic difference
between them could bias the overall rate of change over time
(Mackas, 2011; Rykaczewski and Dunne, 2011). We conducted
several analyses to explore this possible bias. Firstly, if temporal
sampling differences were biasing the Chl trends, the magnitude
of the bias should scale proportionally to the magnitude of the
trends. To quantitatively test this, we examined the linear scaling
of space- and time-matched ChlT and ChlI values on log–log scales
in conjunction with the trend estimated from the integrated data
(byear,B) for each individual 10� � 10� cell. The linear scaling param-
eter was estimated as the model II major axis log–log regression
slope of ChlT against ChlI (bbias), whereby parameter values greater
than 1 indicate ChlT > ChlI (Eq. (8)). If declining Chl trends were the
result of a bias resulting from the blending of different data
sources, bbias should be negatively related to byear,B. There was no
indication that a systematic bias was present (r2 = 0.01, P = 0.19),
suggesting that the estimated Chl trends (byear,B) are not an artifact
of the blending of ChlT and ChlI (Fig. 5D).

Whereas the ChlI measurements in the integrated database con-
tain intrinsic measurement error, the ChlT values are calibrated
using a deterministic process and thus contain only an indirect
form of measurement error. Consequently the means of ChlT and
ChlI are identical, but their variances may not be (Fig 5E). Analyses
were performed to determine the possible effect of this uneven
variance on the estimated Chl trends. Trends were estimated using
only Chl measurements that were within the extreme tails of the
ChlT distribution. This truncation simulation effectively standard-
ized the variances of ChlI and ChlT. By comparing trends estimated
from the truncated data against those estimated using all data, the
sensitivity of the trends to the potentially uneven variances of ChlT

and ChlI may be assessed. This analysis suggested that the trends
were insensitive to the larger variance of ChlI measurements (Fig
5F). The changes estimated from the truncated database indicated
a slightly greater proportion of declining 10� cells and greater rates
of Chl decline.
4. Discussion and conclusion

This analysis presents comprehensive empirical evidence for a
decline in average Chl across the majority of the global ocean, par-
ticularly over the second half of the 20th century. Importantly, this
work builds upon previous estimates of long-term phytoplankton
change (Boyce et al., 2010) and addresses all critical comments
which were published in response (Boyce et al., 2011; Mackas,
2011; McQuatters-Gollop et al., 2011; Rykaczewski and Dunne,
2011). We have increased the robustness of this analysis in several
ways including:

(1) Using a larger Chl database with more stringent data quality
control methods and direct Chl calibration methods (full
details in: Boyce et al., 2012).

(2) Implementing a range of new analyses to ascertain the
sensitivity of the estimated trends to any possible biases
(Mackas, 2011; Rykaczewski and Dunne, 2011).

(3) Using multi-model analyses to eliminate the reliance on a
single model of Chl change, and enabling for more complex
Chl dynamics to be tested.

(4) Restricting our analysis to Chl time-series that span at least
35 years, to minimize any confounding with cyclical climate
variability (Beaulieu et al., 2013; Henson et al., 2010).
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Following these improvements, the trajectories of Chl change
reported here are similar, but not identical, to those estimated pre-
viously (Boyce et al., 2010). Statistically significant chlorophyll de-
clines were observed in 60.1 ± 0.076% of 10� cells examined, and
over 62% of the global ocean surface area where trend analysis
was possible. While Chl has declined over most of the ocean, Chl
trends were spatially heterogeneous. Large clusters of declining
cells were observed across the mid- to high-latitude Atlantic
oceans, the western Pacific and the eastern tropical Pacific Oceans
(Fig. 1A). Patches of increasing cells were found in the North Pacific
Ocean, northeast Atlantic Ocean, and Mediterranean Sea (Fig. 1A).
The greatest rates of Chl change were observed in the Southern
Hemisphere (<50�S), and where the trend time span was shorter,
likely as a function of limited data availability.

Weighted linear regression analysis suggested that the rate of
Chl change became increasingly negative with increasing distance
from land masses, (p < 0.01). This suggests that Chl in the open
oceans has been declining more rapidly than in shelf areas. This
finding is in agreement with results derived from satellite data
over more recent time periods (1997 to �2007), documenting
declining phytoplankton in the open oceans (Gregg et al., 2005;
Vantrepotte and Melin, 2009; Ware and Thomson, 2005) and
expansion of the oligotrophic gyres (Polovina and Woodworth,
2012; Polovina et al., 2008). These declining trends have been gen-
erally related to ocean warming, intensifying vertical stratification
and reduced vertical mixing (Behrenfeld et al., 2006; Boyce et al.,
2010; McClain and Signorini, 2004; Polovina et al., 2008), although
they are largely unexplored over pre-satellite eras. Stable or
increasing trends in shelf areas, could be, at least in part, due to
the effects of anthropogenic eutrophication (Jickells, 1998; Nixon,
1995; Peierls et al., 1991), which may counteract the effects of
increasing stratification on nutrient supply rates.

Regional estimates of change were in general agreement with
local estimates, with the largest declines observed in the Atlantic
(excluding the Northeast Atlantic), and polar regions (Figs. 2 and
3). Due to the large spatial scale of these estimates, and because
the minimum trend length of our analysis is 35 years, it is chal-
lenging to compare our results to independently published esti-
mates, almost all of which are estimated at finer spatial scales
(Reid, 1975; Reid et al., 1998; Saba et al., 2010; Venrick et al.,
1987), or over shorter time intervals (Antoine et al., 2005; Behren-
feld et al., 2006; Goes et al., 2005; Gregg et al., 2005; Montes-Hugo
et al., 2009). Despite this, some general patterns appear to emerge.

Local and regional declines in the North Pacific were broadly
supported by independent long-term estimates derived from ocean
transparency (Falkowski and Wilson, 1992) or colour (Wernand
and van Der Woerd, 2010). Our estimated rate of decline for the
North Pacific region (�0.0005 mg m�3 yr�1) is similar but smaller
than that estimated over a shorter time interval (�0.002 mg m�3 -
yr�1; 1900–1981) by Falkowski and Wilson (1992).

Long-term local and regional Chl changes in the North Atlantic
are in agreement as well with estimated changes in the phyto-
plankton colour index (PCI) from the North Sea and Northeast
Atlantic using the continuous plankton recorder (CPR) survey
(Raitsos et al., 2005; Reid, 1975; Reid et al., 1998), but at odds with
PCI estimates from the Central Northeast Atlantic (52� to 58�N and
10� to 20�E). Changes in Chl across the Northeast Atlantic since
�1978 estimated from remote sensing measurements are spatially
variable, but when averaged spatially also agree with our esti-
mates, and are suggestive of a declining trend (Antoine et al.,
2005; Gregg and Conkright, 2002). Indeed, both our analysis and
those using the phytoplankton color index or remote sensing data
suggest that phytoplankton changes across the North Atlantic are
spatially heterogeneous (Antoine et al., 2005; Behrenfeld et al.,
2006; Gregg and Conkright, 2002; Reid, 1975; Reid et al., 1998).
This heterogeneity also extends to time trends, and Chl time trends
based on empirical estimates (Antoine et al., 2005; Boyce et al.,
2010; Gregg and Conkright, 2002; Reid, 1975; Reid et al., 1998)
and future predictions (i.e. Henson et al., 2010; Olonscheck et al.,
2013; Steinacher et al., 2010) are notably variable. Our analysis
suggests that different dynamics may explain phytoplankton vari-
ability in the eastern and western portions of the North Atlantic re-
gion (Fig. 2), and that estimating a single aggregate trend for the
entire region may be inappropriate.

Globally, the direction of long term secular trends described
here is consistent with ocean general-circulation model (OGCM)
projections of future changes in Chl over similar time horizons.
Although there is substantial variability among OGCM projections,
15 of 18 published estimates report declining marine Chl or pri-
mary production into the future (median time interval: 100 yr;
time interval range: 10–2000 yr; Beaulieu et al., 2013; Bopp
et al., 2001; Boyd and Doney, 2002; Cermeno et al., 2008; Cox
et al., 2000; Henson et al., 2010; Hofmann et al., 2011; Olonscheck
et al., 2013; Steinacher et al., 2010; Taucher and Oschlies, 2011).
These models do not account for biological interactions, which
may modify the Chl time trends (O’Connor et al., 2009; Olonscheck
et al., 2013; Taucher and Oschlies, 2011).

We conclude that average upper ocean chlorophyll concentra-
tions have declined over the past century but that the absolute
magnitude of this change remains uncertain (global averages from
local and regional models were both negative, but varied by a fac-
tor of 7). The rates of change we report are also heterogeneous in
space and time and are overlaid by multi- decadal variability.
Our analysis suggests that the direction of upper ocean Chl change
is robust (i.e. consistently declining, on average), but the magni-
tude of changes is sensitive to the scale at which data are aggre-
gated. A major source of this uncertainty stems from the limited
availability of Chl measurements in many regions and years. This
uncertainty and the fundamental importance of marine phyto-
plankton should provide a powerful incentive to increase global
observational capabilities in order to more accurately resolve
long-term phytoplankton change.
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