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Although fishing is one of the most widespread activities by which humans harvest
natural resources, its global footprint is poorly understood and has never been directly
quantified.We processed 22 billion automatic identification system messages and
tracked >70,000 industrial fishing vessels from 2012 to 2016, creating a global dynamic
footprint of fishing effort with spatial and temporal resolution two to three orders of
magnitude higher than for previous data sets. Our data show that industrial fishing occurs
in >55% of ocean area and has a spatial extent more than four times that of agriculture.
We find that global patterns of fishing have surprisingly low sensitivity to short-term
economic and environmental variation and a strong response to cultural and political
events such as holidays and closures.

A
griculture, forestry, and fishing are themain
activities by which humans appropriate the
planet’s primary production (1, 2) and re-
shape ecosystems worldwide (3). Recent
advances in satellite-based observationhave

allowed high-resolution monitoring of forestry
and agriculture, creating opportunities such as
carbon management (4), agricultural forecasting
(5), and biodiversity monitoring (6) on a global
scale. In contrast, we lack a precise understanding

of the spatial and temporal footprint of fishing,
limiting our ability to quantify the response of
global fleets to changes in climate, policy, eco-
nomics, and other drivers. Although fishing ac-
tivities have been monitored for selected fleets
using electronic vessel monitoring systems, log-
books, or onboard observers, these efforts have
produced heterogeneous data that are neither
publicly available nor global in scope. As a result,
the global footprint of fishing activity, or “effort,”

could be inferred only from disaggregated catch
data (7, 8).
Recent expansion of the automatic identifi-

cation system (AIS) (9) presents an opportu-
nity to fill this gap and quantify the behavior
of global fleets down to individual vessels (10).
Although AIS was originally designed to help
prevent ship collisions by broadcasting to nearby
vessels a ship’s identity, position, speed, and turn-
ing angle every few seconds, these messages are
also recorded by satellite- or land-based receivers.
Whereas its usefulness as a tracking tool has
been established locally (11–13), we use AIS to
directly map global fishing activity.
We processed 22 billion global AIS positions

from 2012 to 2016 and trained two convolutional
neural networks (CNNs): one to identify vessel
characteristics and a second to detect AIS posi-
tions indicative of fishing activity (fig. S1). The
vessel characterization CNN was trained on
45,441 marine vessels (both fishing and nonfish-
ing) that were matched to official fleet registries.
The resulting model identifies six classes of
fishing vessels and six classes of nonfishing
vessels (tables S1 and S2) with 95% accuracy
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Fig. 1. The spatial
footprint of fishing.
(A to D) Total fishing
effort [hours fished per
square kilometer
(h km−2)] in 2016 by
all vessels with AIS
systems (A), trawlers
(B), drifting longliners
(C), and purse seiners
(D). (E) Examples of
individual tracks of
a trawler (blue), a
longliner (red), and a
purse seiner (green).
Black symbols show
fishing locations for
these vessels, as
detected by the neural
network, and colored
lines are AIS tracks.
(F) Global patterns of
average annual NPP
[expressed as
milligrams of carbon
uptake per square
meter per day
(mg C m−2 day−1)] are
shown for reference.
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and performs well at predicting vessel length
[R2 (coefficient of determination) = 0.90], engine
power (R2 = 0.83), and gross tonnage (R2 = 0.77)
(fig. S2). The fishing detectionmodel was trained
on AIS data from 503 vessels and identified
fishing activity with >90% accuracy (fig. S3 and
table S3).
The resulting data set contains labeled tracks

of more than 70,000 identified fishing vessels that
are 6 to 146 m in length. We aggregated fishing
effort by fishing hours (the time spent fishing)
and by kilowatt-hours (kWh) (the estimated ener-
gy expended). This effort can be mapped at hour-
and kilometer-level resolution, or two to three
orders of magnitude higher than previous global
maps of catch-derived effort (14, 15). Although
the data set includes only a small proportion of
the world’s estimated 2.9 million motorized fish-
ing vessels (16), it contains 50 to 75% of active
vessels larger than 24 m (tables S4 and S5) and
>75% of vessels larger than 36 m, the size at
which most vessels are mandated by the Inter-
national Maritime Organization to transmit AIS
signals. We empirically estimate that vessels with
AIS account for 50 to 70% of the total energy
expended while fishing beyond 100 nautical miles
from land (fig. S4). The fraction of fishing cap-
tured closer to shore varies strongly by region,
largely on the basis of national AIS usage rates
(tables S4 and S5). For pelagic ecosystems, we
cross-referenced AIS data with effort data re-
ported by regional fisheries management orga-
nizations (RFMOs) and found strongly positive
relationships (fig. S5). Regional deviations from
this relationship can help identify zones of poor
satellite coverage, limited AIS usage, or potential
misreporting of fishing effort to RFMOs.
Over the course of 1 year (2016), our data set

captured 40 million hours of fishing activity by
vessels that consumed 19 billion kWh of energy
and covered a combined distance of more than
460 million km, equivalent to traveling to the
Moon and back 600 times. The spatial footprint
of fishing, as determined with AIS, is unevenly
distributed across the globe (Fig. 1A). Global hot
spots of fishing effort were seen in the northeast
Atlantic (Europe) and northwest Pacific (China,
Japan, and Russia) and in upwelling regions off
South America and West Africa (Fig. 1A). Areas
withminimal fishing effort included the Southern
Ocean, parts of the northeast Pacific and central
Atlantic, and the exclusive economic zones (EEZs)
ofmany island states, forming conspicuous “holes”
in the global effort map (Fig. 1A).
Dividing the ocean into an equal-area grid

with 0.5° resolution at the equator, we observed
fishing in 55% of cells in 2016. The total area
fished is likely higher, as we did not observe some
fishing effort in regions of poor satellite cover-
age or in EEZs with a low percentage of vessels
using AIS (figs. S6 and S7 and table S6). If we
generously assume that these regions are fully
fished, we would calculate that 73% of the ocean
was fished in 2016. There may also be some re-
gions of the high seas with good satellite cover-
age where we are missing effort due to vessels not
having AIS. However, given that AIS captures the

majority of fishing effort in the high seas (fig. S4),
this missing effort is unlikely to substantially af-
fect our estimate. Previous work, based on ocean
basin–scale landing data, estimated that >95% of
the oceanmaybe fishedwhen using a similar grid
size (15). Thoughour estimate is lower, the percent-
age of the ocean fished is still much higher than
the fraction of land used in agriculture or grazing
(~34%) (17), coveringmore than 200million km2,
compared with 50 million km2 for agriculture.
This large spatial footprint varies by gear

type and fleet. Longline fishing was the most
widespread activity and was detected in 45% of

the ocean (Fig. 1B), followed by purse seining
(17%) (Fig. 1C) and trawling (9.4%) (Fig. 1D).
Different gear types had distinct latitudinal dis-
tributions, with trawling confinedmostly to higher
latitudes, purse seining concentrated in tropical
regions, and longlining in between. Longliners
had the greatest average trip length between
anchorages (7100 km) and displayed transoceanic
circumglobal movements, whereas purse seiners
(average trip length, 750 km) and trawlers (average
trip length, 510 km) were typically active on a
more regional scale (Fig. 1E). Analyzing the
spatial distribution of individual fleets, we found
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Fig. 2. The temporal footprint of fishing. Fishing hours by day and latitude (A) and seasonal
patterns of marine net primary production (B). (C) Fishing hours per day for the Chinese fleet, with
annual moratoria and the Chinese New Year highlighted. Light pink shading shows where some
regions in the Chinese EEZ observe fishing moratoria, and dark pink shading shows where most of
the Chinese EEZ is under moratorium. (D) In contrast, non-Chinese vessels show a strong weekly
pattern and a drop in effort due to the Christmas holiday. Insets in (A) highlight periods of low effort
around (i) annual fishing moratoria in Asian waters, (ii) Christmas in North America and Europe,
and (iii) weekends, as well as (iv) a seasonal signal for longline fishing in the Southern Hemisphere
(Fig. 3C).
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that most nations fished predominantly within
their own EEZ, with five flag states (China, Spain,
Taiwan, Japan, and South Korea) accounting for
more than 85% of observed fishing effort on the
high seas (fig. S8).
The temporal footprint of fishing was surpris-

ingly consistent through time (Fig. 2A). A large
annual drop inmid-latitude effort coincides with
annual fisherymoratoria in China, a smaller drop
at higher latitudes corresponds to the Christmas
vacation inEurope andNorthAmerica, andbreaks
in effort occur during the weekends for many
Northern Hemisphere fisheries (Fig. 2A, insets).
In stark contrast, temporal patterns of net pri-
maryproductivity (NPP)present a seasonal “heart-
beat” of biological activity (Fig. 2B) that is not

reflected by human activity at this scale (Fig. 2A).
For non-Chinese vessels (Fig. 2D), the largest
contributors to variations in the overall temporal
footprint were the Christmas holiday and week-
ends, with the remaining seasonal variation ex-
plaining a small amount of the temporal footprint
(fig. S9). In contrast, Chinese vessels show little
weekly variation, and their yearly pattern is dom-
inated by the Chinese New Year and the annual
moratoria during the summer months (Fig. 2C).
Although some fleets display seasonalmovements
(Fig. 3), the work week, holidays, and political
closures aremuchmore influential than natural
cycles in determining the temporal footprint of
fishing on a global scale. This pattern stands in
stark contrast to agriculture, which is focused on

plants and nonmigratory herbivores tied to sea-
sonal cycles of terrestrial primary production (18).
We further inspected how the spatial and tem-

poral footprint of fishing responds to other envi-
ronmental or economic drivers—namely, annual
NPP, sea surface temperature (SST), and fuel
prices. Annual NPP predicts fish catch from
coastal ecosystems (19) but has not been analyzed
as a predictor of effort across the global ocean.
Using a general additive model that accounts
for spatial autocorrelation, we found a highly
significant but relatively weak relationship
between fishing hours (Fig. 1A) and NPP (Fig.
1F) (slope = 0.58, P < 0.001), with only 1.7% of
spatial deviance explained. This relationship
was strongest for purse seiners [slope = 0.74,
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Fig. 3. Effects of climatic variation on fishing effort distribution.
(A) Sea surface temperature anomalies in 2015, with boxes outlining
regions analyzed in subsequent panels. (B) In the equatorial Pacific,
the average longitude of fishing effort for drifting longlines (b.2) shifts
slightly eastward, correlated with an El Niño–Southern Oscillation
(ENSO) event (b.3). The closure of the Phoenix Islands Protected Area
(PIPA) (red arrow) had a similarly strong effect on the distribution of
fishing effort and resulted in an effort gap after January 2015.The dashed
lines mark the eastern and western extents of PIPA. (C) Longline fleets
in the Indian Ocean fished 70 to 90 km farther south in July of 2015
than in July of 2014 or 2016, tracking water masses ranging between
16° and 19°C.White dots show the mean latitude of fleets each July.
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Fig. 4. Response to economic forcing. (A) Monthly averages of the global
price of marine diesel oil (gray line) and total hours at sea by the global
fishing fleet after removing seasonality (solid black line) reveal that a large
decrease in fuel price from 2013 to 2016 corresponded to minimal change in

fishing activity (the dashed line corresponds to the trend component via
additive decomposition). (B) The short-run price elasticity of fuel demand
(–0.06, P < 0.001; error bar denotes 95% confidence interval) is comparable
to those in other sectors.

RESEARCH | REPORT

Corrected 22 February 2018. See full text. 
on F

ebruary 22, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


P < 0.001, deviance explained (DE) = 2.5%]
and trawlers (slope = 0.69, P < 0.001, DE = 2.1%),
which are commonly found in highly productive
coastal areas, and weakest for drifting longlines
(slope = 0.37, P < 0.001, DE = 0.6%), which oper-
ate largely inmedium- to low-productivitywaters.
Although these relationships may be strength-
ened by incorporating additional drivers and dif-
ferent scales, global fishing effort corresponds
only loosely to NPP.
We further explored the response to elevated

SST in 2015 (Fig. 3), when a positive Indian Ocean
dipole mode index and an El Niño event warmed
the Indian and Pacific Oceans, respectively (20).
In the Indian Ocean, we found longline fishing
concentrated between the 16° and 19°C isotherms
[r (correlation coefficient) = 0.8 between average
latitude of fishing effort and the 19°C isotherm].
Fishing effort in this region was an average of
70 to 90 km farther south in July of 2015 than in
July of 2014 or 2016 (Fig. 3C). In the equatorial
Pacific, previous studies have shown that regional
warming during El Niño years correlates with
a shift in the catch of skipjack tuna of up to
40° longitude (21). By analyzing effort across all
fleets in the region, we find a more modest re-
sponse. The total fleet shifts by ~3.5° per unit of
the El Niño–Southern Oscillation (ENSO) index
(second-order autoregression model, P < 0.001),
with purse seiners responding more strongly than
longlines. This shift corresponds to a movement
of ~10° longitude of the average location of fish-
ing effort over ~2 years (Fig. 3B, b.2). This shift,
likely due to a strong El Niño, was similar in
magnitude to the effect of a change in policy.
When the Phoenix Islands Protected Area (PIPA)
was closed to industrial fishing in 2015 (Fig. 3B),
the average longitude of fishing effort moved by
~10° over a month as fleets recalibrated to new
regulations (Fig. 3B, b.2).
Changes in fuel price may also drive variation

in fishing effort, as fuel represents, on average,
24% of costs (22). Previous research regarding
the effects of fuel price on the structure (23),
economic performance (24), and behavior (25)
of European fishing fleets suggests that, at a
regional level, fishing fleets respond to fuel price.
Tomeasure elasticity globally, we built amonthly
time series of the average price of marine diesel
matched with tracking data for all fishing vessels
active since 2014. The resulting sample includes
5933 vessels from 82 flag states (table S7). We
found that a >50%drop in fuel price corresponded
to a minimal change in fishing effort (measured
as the time spent at sea) (Fig. 4 and table S8).
These data suggest that the short-run price elas-
ticity of fuel demand for the global fishing fleet is
–0.061 (P < 0.001) (Fig. 4B), implying that a 10%
increase in the price of fuel would correspond to
a 0.6% decrease in global fishing activity. This
elasticity is smaller than that implied by previous
studies in fisheries but is comparable to those in

other commercial sectors (26–28) (Fig. 4B). It is
possible that abundant fuel subsidies decouple
fisheries fromenergy costs,masking the true price
elasticity of fuel demand.
These results provide insight into the spatial

and temporal footprint of global fishing fleets.
Fishing vessels exhibit behavior with little natural
analog, including circumglobalmovementpatterns
and low sensitivity to energy costs or seasonal and
short-term interannual oceanographic drivers. It
appears that modern fishing is like other forms of
mass production that are partially insulated from
natural cycles and are instead shaped by policy
and culture. The absolute footprint of fishing is
much larger than those of other forms of food
production, even though capture fisheries provide
only 1.2% of global caloric production for human
food consumption (29), ~34 kcal per capita per
day (16). We also find that large regions of the
ocean are not heavily fished, and these areas
may offer opportunities for low-cost marine con-
servation. To further the understanding andmon-
itoring of global fisheries, we are making daily
high-resolution global rasters of effort publicly
available. These data provide a powerful tool for
improved global-scale ocean governance and are
well positioned to help assess the effectiveness of
existingmanagement regimes while accelerating
the development of novel dynamic management
approaches (30) that respond in real time to
changing ocean conditions, management issues,
or conservation concerns.
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