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Marine phytoplankton play a key role in the functioning of
the Earth’s ecosystem, through their effects on climate (Charl-
son et al. 1987; Murtugudde et al. 2002; Wernand and van der
Woerd 2010), geochemical cycling (Roemmich and McGowan
1995; Sabine et al. 2004), fisheries yield (Chassot et al. 2010;
Chassot et al. 2007), and other important processes. Yet our
understanding of macroecological phytoplankton dynamics is
limited by the availability of accurate, large-scale, long-term
measurements of abundance, particularly from the era pre-
dating the operations of satellite sensors (ocean color radiom-
etry; available since 1978). Here, we construct a multi-decadal
time-series of chlorophyll concentration, an indicator of phy-
toplankton biomass, by statistically integrating historical ship-
board measurements from different sensors and sampling
platforms.

Measurements of total chlorophyll pigment concentration

(Chl) capture first-order changes in phytoplankton carbon
biomass, and despite some known variations in the Chl-to-car-
bon ratio (Geider 1987) are considered to be the best indicator
of phytoplankton C biomass available on a global scale (Hen-
son et al. 2010; Huot et al. 2007). Direct shipboard mea-
surements of upper ocean Chl have been made since the early
1900s, first using spectrophotometric (Stokes 1864) and then
fluorometric analyses of filtered seawater residues, and more
recently through in vivo measurements of phytoplankton flu-
orescence (Jeffrey et al. 1997; Lorenzen 1966; Yentsch and
Menzel 1963). Measurements of upper ocean transparency
using the standardized Secchi disk have been made since 1866
(Collier et al. 1968; Tyler 1968) and have been used as a pre-
dictor of surface ocean Chl through empirically based optical
equations (Falkowski and Wilson 1992; Lewis et al. 1988).
Although the Secchi disk is one of the oldest and simplest
oceanographic instruments, Chl concentrations derived from
Secchi depth observations (ZD) are closely comparable to those
estimated from direct in situ optical measurements or satellite
remote sensing (Boyce et al. 2010; Lewis et al. 1988). Finally,
standardized measurements of ocean color using the Forel-Ule
(FU) comparator scale are available from 1890 to present (Forel
1890) and have been used as an indicator of biological activ-
ity (Wernand and van der Woerd 2010).

Modeling results indicate that a phytoplankton time series
of ~40 years is necessary to separate natural variability from
long-term change (Henson et al. 2010). Because the available
continuous ocean color satellite record (currently 1997 to
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2011) is presently too short, direct measurements of Chl,
transparency, and color represent the only available data to
assess multi-decadal phytoplankton dynamics. To this end,
efforts have been directed toward developing methods to reli-
ably merge different ocean color data (I.O.C.C.G. 2007), and
several studies have combined historical and contemporary
Chl data to produce synthetic Chl time series (Boyce et al.
2010; Gregg and Conkright 2002; Gregg et al. 2003; Raitsos et
al. 2005). Such approaches require a good knowledge of the
accuracy, precision, and comparability of Chl measurements
sampled from different observational platforms.

Here, we build and expand upon the methods developed in
a previous study (Boyce et al. 2010), taking into account sug-
gested improvements (Boyce et al. 2011; Mackas 2011;
McQuatters-Gollop et al. 2011; Rykaczewski and Dunne 2011).
By using a larger, more spatially and temporally comprehen-
sive database and improved statistical methods, we predict
Chl concentrations from available measurements of upper
ocean transparency (ZD) and color (FU), available since 1890.
After affirming the accuracy of the predictive methods, both
directly measured and predicted Chl data were combined to
create a globally integrated and inter-calibrated Chl database
(see web appendices). We then examine the accuracy of the
calibrated Chl data against more recent and spatially extensive
remote sensing estimates of Chl.

Materials and procedures
Data

All data used in this analysis were extracted from publicly
available databases (Table 1).

In situ measurements
Direct shipboard measurements of upper-ocean, in

situ–derived Chl (ChlI, mg m–3) were extracted from the
National Oceanographic Data Center (NODC), the World-
wide Ocean Optics Database (WOOD), and the International
Council for the Exploration of the Sea Database (ICES). ChlI

measurements were made on discrete water samples collected
at different depths, from vertical profiling instruments, or

continuous observations by shipboard flow-through systems.
ChlI values were derived by spectrophotometric techniques
(Stokes 1864), in vitro and in vivo fluorometric techniques (Jef-
frey et al. 1997; Lorenzen 1966; Yentsch and Menzel 1963), or
chromatographic methods such as high-performance liquid
chromatography (HPLC) or filtered samples (Mantoura and
Llewellyn 1983). ChlI measurements were derived using dif-
ferent instrumentation, on different platforms, and by differ-
ent observers, but are collectively regarded as the most accu-
rate Chl measurements available, and are commonly used to
inter-calibrate Chl estimates from more indirect sources, such
as remote sensing platforms. To allow comparability with Chl
estimates from other sources, which almost exclusively esti-
mate Chl in the uppermost layers of the oceans, only ChlI col-
lected in the upper 20 m were used in our analysis. All dupli-
cated measurements were removed from the database before
analysis.

Transparency measurements
Measurements of upper ocean transparency (ZD, m) were

collected with the standardized Secchi disk and were extracted
from several publicly available databases. ZD measurements are
collected by lowering a white Secchi disk into the seawater
and recording the depth at which the disk is no longer visible.
Measurements of upper ocean transparency collected with the
Secchi disk have been collected using a standardized method-
ology since 1866 and have been related to inherent and appar-
ent optical properties measured by modern oceanographic
instruments in the context of a “theory” of the Secchi disk (see
Preisendorfer 1986). Secchi disk measurements have been used
to infer changes in biological productivity and phytoplankton
abundance in both freshwater and oceans (Boyce et al. 2010;
Collier et al. 1968; Falkowski and Wilson 1992; Lewis et al.
1988; Tyler 1968). The linkage between observations of trans-
parency and chlorophyll is through the dominant influence of
marine phytoplankton on absorption and scattering of light
in the upper ocean, similar to the basis of using ocean color
radiometry in the inference of chlorophyll concentration in
the upper ocean.
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Table 1. Data sources. 

Parameter Symbol Source n Extracted n Final Temporal Web site

Chlorophyll ChlI WOOD 1,665,895 5,315 1900-2003 www.wood.jhuapl.edu/wood/
Chlorophyll ChlI NODC 2,524,096 155,493 1933-2010 www.nodc.noaa.gov/
Chlorophyll ChlI ICES 349,308 20,532 1934-2010 www.ices.dk/indexfla.asp
Chlorophyll ChlCZCS NASA (CZCS) NA NA 1978-1986 oceandata.sci.gsfc.nasa.gov
Chlorophyll ChlSWFS NASA (SeaWiFS) NA NA 1997-2011 oceandata.sci.gsfc.nasa.gov
Transparency ZD WOOD 41,388 22,266 1903-2008 www.wood.jhuapl.edu/wood/
Transparency ZD NODC 160,383 128,988 1899-2007 www.nodc.noaa.gov/
Transparency ZD ICES 38,385 17,432 1903-1998 www.ices.dk/indexfla.asp
Transparency ZD MIRC 121,436 101,053 1923-1998 www.mirc.jha.jp/en/outline.html
Transparency ZD BIDA 8,389 304 1890-1898 links.baruch.sc.edu/
Color FU NODC 203,763 193,533 1890-2008 www.nodc.noaa.gov/



Ocean color measurements
Measurements of upper ocean color have been recorded

since 1890 using the Forel-Ule color index scale (FU). The FU
observations have been collected using a standardized
methodology designed to quantitatively assess the color of the
upper ocean against a scale of 21 discrete colors ranging from
dark blue (FU = 1) through different shades of green to brown
(FU = 21); (Forel 1890). FU measurements are derived by sub-
jectively matching the color of the seawater to that of the
Forel-Ule color scale. Although the optical characteristics of
the Forel-Ule measurements are largely unresolved, they have
been useful in inferring long-term changes in biological activ-
ity (see recent review by Wernand and van der Woerd 2010),
and may be useful in deriving upper ocean chlorophyll con-
centrations.

Radiometry measurements
Measurements of Chl derived from remotely sensed ocean-

leaving radiances were extracted from the National Aeronau-
tics and Space Administration’s (NASA) ocean color database.
Chl measurements derived from the Coastal Zone Color Scan-
ner (CZCS; ChlCZCS; 1978-1986; Hovis et al. 1980), and the Sea-
viewing Wide Field-of-view Sensor (SeaWiFS; ChlSWFS; 1997-
2010; McClain et al. 2004) were used. Remote sensing Chl data
were extracted as monthly 9 km2 resolution reprocessed Chl
measurements and were spatially interpolated to 1° ¥ 1° cells
for each year and month using nearest neighbor algorithms.
Analysis

The steps in this analysis included the following:
1. Quality control: ChlI, ZD and FU measurements are

adjusted or eliminated from the database based on objec-
tive quality-control procedures.

2. Corrections and standardizations: ChlI, ZD, and FU mea-
surements are objectively standardized to common spatial
and temporal resolutions.

3. Calibration: Chl fields are predicted from ZD and FU based
on available spatial and temporal matchups with ChlI

measurements.
4. Validation: The precision and accuracy of calibrated Chl

measurements are compared against independent Chl
measurements to assess their accuracy.

Quality control: ZD and FU measurements
To eliminate the optically confounding effects of sus-

pended particles and dissolved organic material associated
with terrigenous sources, all near-shore (<20 m water depth or
<1 km from the nearest coastline) ZD and FU measurements
were removed from the database. If the time or location of the
ZD or FU measurements were erroneous, those measurements
were also removed. All FU measurements less than one or
greater than 21, and all ZD measurements less than zero or
greater than 60 m were treated as biologically implausible and
removed from the database.
Quality control: ChlI measurements

The ChlI measurements used here have been collected since
1900 by different institutions and methods, and their accu-

racy may be affected by weather conditions, incorrectly cali-
brated instrumentation, sampling technique, data digitization
errors, the optical complexity of seawater, and other factors.
Due to the central importance of the ChlI measurements to
the subsequent calibration exercise and the larger number of
factors potentially affecting their accuracy, the ChlI mea-
surements were rigorously filtered to remove any erroneous
measurements. As for FU and ZD measurements, all near-shore
ChlI measurements (<20 m depth or <1 km from the nearest
coastline) and those with erroneous locations and time were
removed. ChlI measurements were identified as statistical out-
liers if they i) were greater than 75 mg m–3; ii) were below the
published limit of detection (0.01 mg m–3; Wiltshire et al.
1998); or iii) were identified as outliers by NODC quality con-
trol methods (details in Conkright et al. 2002). Our analysis
revealed that a small fraction of the ChlI database contained
outlying values, which were likely uncalibrated fluorescence
measurements (Boyer et al. 2009). Such errors are likely sys-
tematically dependent on the cast, cruise, or observer associ-
ated with the outlying ChlI measurement. To account for this,
ChlI measurements collected in casts or cruises where over
10% of all measurements were flagged as outliers by the pre-
vious criteria were removed from the database. Whereas some
erroneous measurements will remain, these represent a small
fraction of the entire ChlI database and constitute a random,
rather than systematic departure from the mean. Following
this step, all remaining outlying individual ChlI mea-
surements in the database were removed.

Chl measurements of 0 mg m–3 accounted for a small frac-
tion (~0.4%) of all ChlI data but are biologically implausible in
even the most oligotrophic marine waters. These mea-
surements may either reflect data collection or digitization
errors or valid measurements, which are below the detection
limit of the sampling instrument. To identify and remove erro-
neous zero-Chl values and to estimate the true but unknown
zero-Chl values, we fit an objective function relating Chl to
sampling depth for each cast according to the number of ChlI

measurements in each cast:
For casts containing more than six unique ChlI mea-

surements, zero-ChlI values were assessed based on an empiri-
cally based function relating ChlI to the sampling depth. Zero
ChlI values falling within the 95% confidence levels of the fit-
ted function were assumed to be true data, which were below
the limit of detection and were readjusted to 50% of the min-
imum Chl value within the cast. If this adjusted value was
greater than the lowest limit of detection (0.01 mg m–3) then
the values were again readjusted to 0.005 mg m–3. Zero ChlI

values falling outside the confidence limits of the function
were identified as erroneous and removed from the database.

For casts containing between one and six additional mea-
surements, if the lowest recorded ChlI value was greater than
0.01 mg m–3 then the zero-ChlI value was assumed to be erro-
neous and was removed from the database. Otherwise, the
zero ChlI values were adjusted to 50% of the minimum ChlI
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value in the cast. If this adjusted value was greater than 0.01
mg m–3 then the values were again readjusted to 0.005 mg m–3.

These corrective algorithms were visually inspected for
each cast to ensure adequate performance. All zero-ChlI mea-
surements contained within casts with less than two addi-
tional measurements were eliminated from the database.

Even within the upper 20 m of the water column, ChlI val-
ues can vary over several orders of magnitude, in part due to
nonphotochemical quenching of fluorescence. To account for
this variability, mean ChlI measurements were calculated over
depth for each cast under an assumption of a well-mixed sur-
face layer. Alternate depth interpolations such as the depth-
weighted mean, median, Akima method (Akima 1978),
wavelets, polynomials, and generalized additive models
(Hastie and Tibshirani 1986; Wood 2006) relating ChlI to the
sampling depth were used but did not improve the results.

Global spatial patterns of chlorophyll at intra-annual
timescales vary in a distinct and well-established manner
(Doney et al. 2003; Mahadevan and Campbell 2002). Spatial
filters were used to identify extreme outlying ChlI mea-
surements. For each annual season (n = 4), a flexible spatial
trend surface was fitted to the ChlI data. This was accom-
plished by fitting an additive model (Wood 2006) to the data
as follows:

Ln(mi) = B0 + f1(Latitudei, Longitudei) + eI (1)

where Ln(mi) is the expected mean log-transformed ChlI con-
centration, B0 is the model intercept, f1 is the nonparametric
effect estimated from the data, and ei is an error term. Mea-
surements, which were more than 12 standard deviations
from the fitted spatial surface, were flagged as extreme outliers
and removed from the database (n = 930). This technique is
comparable to the Boolean ‘range checking’ methods, which
are a common quality control method for oceanographic data
(Conkright et al. 2002).

Throughout these analyses, ChlI collected using ‘underway’
methods (undulating ocean recorder or towed CTD) displayed
atypical frequency distributions and many statistically outly-
ing observations. Because the accuracy of these data could not
be empirically verified, they were removed from the analysis.
Standardizations

To examine the relationship between ChlI, ZD, and FU data,
all measurements were binned to a common spatial and tem-
poral resolution. To balance the fine resolution necessary to
accurately capture small-scale spatial variations against the
coarse resolution required to obtain representative sample
sizes, data were individually binned into 1° ¥ 1° cells. Mean val-
ues per year and month for each cell (DataM,jkl) were calculated:

DataM,jkl = Â Datai,jkl / Â Ni,jkl (2)

where Datai,jkl is the data value and Ni,jkl is the number of mea-
surements for cell j, month k, and year L. Objectively weighted

binning algorithms were also implemented (Boyce et al. 2010;
Levy and Brown 1986; Lewis et al. 1988), but did not change the
resulting parameter values within three decimal points. Hence,
we used the simpler unweighted binning procedure here.
Calibration

Previous Chl calibration algorithms have used a linear rela-
tionship on a logarithmic scale between Secchi depth and ChlI

provided that measurements are made in optically noncom-
plex case I waters (Falkowski and Wilson 1992; Lewis et al.
1988). The basis for this relationship is best explained through
the equation relating ZD to the optical properties of marine
waters which to first order:

ZD µ 1/(c + K) (3)

where c is the average (photopic) beam attenuation coefficient
(m–1), and K is the average (photopic) diffuse attenuation coef-
ficient (m–1), and the proportionality depends weakly on illu-
mination, contrast of the disk and water, and visual acuity
(Falkowski and Wilson 1992; Preisendorfer 1986). Variations
in c + K explains the majority of the variability in transparency
depths and co-varies with the amount of attenuating material
in the water through its influence on the inherent optical
properties such as scattering and absorption. For case I ocean
waters, phytoplankton cells and co-varying biogenic dissolved
matter are the principal sources of variation in the optical
properties and empirically based algorithms have conse-
quently been used to derive accurate upper ocean chlorophyll
concentrations (ChlT) from transparency measurements
(Boyce et al. 2010; Falkowski and Wilson 1992; Lewis et al.
1988). The nonlinear nature of the relationship reflects
changes in the average size of phytoplankton cells, where rich
coastal waters have a larger percentage of large cells relative to
low chlorophyll waters where small cells dominate.

Forel-Ule ocean color data are positively correlated with
both the transparency and chlorophyll concentration of the
upper ocean but have not yet been used to derive quantitative
measurements of Chl. Before attempting to calibrate these
data, we examined them along with the ZD data to establish
relationships between ZD or FU measurements and ChlI mea-
surements.

To derive Chl values from ZD or FU, model II ranged major
axis (RMA) linear regression models were fitted to the (1° ¥ 1°
¥ month ¥ year) binned data (Legendre and Legendre 1998;
Sokal and Rohlf 1995). Model II RMA regression methods are
appropriate when both variables in the regression equation
are subject to error (Ripley and Thompson 1987), are
expressed in different units, or the error variances differ
(Legendre and Legendre 1998). This technique accounts for
the fact that ChlI, ZD, and FU measurements were all measured
with some error and that these errors were probably unequal.
ChlI, ZD, and FU measurements were log-transformed to
achieve bivariate normality, and homoscedasticity and linear-
ity were confirmed, as required by the regression analysis. The
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regression parameters from these models were estimated to
predict individual Chl values from each discrete quality-con-
trolled FU and ZD value. Error statistics for the estimated
model parameters were generated using randomized permuta-
tion tests with 1000 replicates (Legendre and Legendre 1998).
The suitability of alternate models and transformations were
explored, but model fit statistics indicated that they did not fit
the data as well as the linear RMA models. The resulting cali-
brated data are denoted as ChlT and ChlF, derived from Secchi
depths and Forel-Ule indices, respectively.
Validation

To explore the accuracy and linear scaling of Chl mea-
surements derived from different methods, two separate vali-
dation analyses were undertaken. The first analysis compared
the accuracy of calibrated ChlT and ChlF measurements against
each other and against the direct ChlI measurements (three
comparisons). The second analysis compared the resulting
integrated calibrated Chl measurements (ChlC) against
remotely sensed ChlSWFS and ChlCZCS measurements (three
comparisons). Both validation analyses employed the same
statistical methods and are described below.

Chl measurements derived using different observational
platforms were individually objectively binned (Eq. 2) and
matched spatially (1° cell) and temporally (month and year) to
the Chl dataset under comparison. RMA regression models
were then fitted to the log-transformed Chl matchups to
examine the linear relationship between them. We used RMA
as opposed to alternate model II regression techniques because
it was the method used to derive ChlT and ChlF values, and the
statistical assumptions remain valid. A Pearson correlation
coefficient of 1, an estimated slope of 1, and an intercept of 0
would indicate that the Chl values from the two data sources
were identical. The bias of the estimated correlation coeffi-
cients and slopes was calculated using a bootstrapping proce-
dure with 1000 replicates (Legendre and Legendre 1998). The
difference between the estimated parameter and the mean of
the bootstrapped estimates provides an estimate of the bias. To
further examine patterns of similarity, the standardized
Euclidean residuals from RMA regression fits were calculated.
These values correspond to the average difference between the
two variables under comparison while minimizing the con-
founding effects of spatial and temporal variation. These dif-
ferences were initially explored by visually inspecting the spa-
tial distribution of the mean and absolute mean Euclidean
residuals, here defined as the shortest distance between the
residual and the fitted regression line. To further explore fac-
tors that may explain any systematic differences between the
variables, spatially explicit univariate and multivariate linear
models were fit to the residuals. Temporal (year, month), spa-
tial (distance from the nearest coast, bathymetry, latitude,
Chl), and optical (climatological CDOM index; Acker and Lep-
toukh 2007; Morel and Gentili 2009; Siegel et al. 2005) factors
were included as possible explanatory variables. An autoco-
variate was included within the models to account for any

potential spatial dependence in the residuals. The autocovari-
ate for each geographic cell (Ai) was calculated as the weighted
average of the measurements within a prespecified geographi-
cal radius of 8 nearest neighbors as

Aq = Âwqryr/Âwqr (4)

where yr is the measurement of y at location r among location
q’s set of kq neighbours; wqr is the weight given to location r’s
influence over location q (Augustin et al. 1996; Dormann
2007; Gumpertz et al. 1997). Individual weights for the auto-
covariate were derived as

wqr = 1/hqr (5)

where wqr is the weight given to cell r’s influence over cell q,
and hqr is the Euclidean distance between cells q and r
(Augustin et al. 1996).

Sensitivity analyses were undertaken to determine how
robust the results of these comparisons were to variation in
the initial conditions of the model. The sensitivity of the esti-
mated slopes and correlation coefficients to changing sample
sizes was estimated by bootstrapping estimates (1000 repli-
cates) at each of 18 sample sizes ranging from 10% to 100% of
available matchups. Additionally, the sensitivity of the esti-
mates to the ocean basin, bathymetry, month, and decade
when the measurements were collected was also examined.

Assessment
After removing erroneous or biologically implausible mea-

surements and those collected in nearshore waters, ChlI, ZD,
and FU measurements were distributed most densely in north-
ern temperate waters (>30°N) and closer to shore (Fig. 1A, D,
G). ChlI measurements were most abundant in the North
Atlantic, whereas ZD and FU measurements were concentrated
in the North Pacific. Spatial patterns of ChlI measurements
were similar to those of ZD and FU measurements (Fig. 1B, E,
H), however the oligotrophic gyres were less clearly delineated
by the relatively sparser FU measurements (Fig. 1H). ChlI mea-
surements were sampled since 1900, but were less available
before 1955. The ZD and FU measurements extended back to
1890 (Fig. 1C, F, I), but were less available since the 1990s. The
data density for all series was greater in Northern Hemisphere
summer months and since 1950.

Regression analysis revealed that the relationship between
available ChlI and ZD matchups (n = 12,841) was linear (log-
transformed) for ZD > 6 m (Fig. 2A). ZD measurements less than
6 m are rare in open ocean waters and are likely erroneous or
associated with coastal waters with complex optical properties.
Examination of available ZD, ChlI, and FU matchups (n = 6710)
confirmed that most ZD values less than 6 m corresponded to
FU values greater than 10 (Fig. 2C), indicative of optically com-
plex green or brown waters located close to coastlines (Fig. 2E).
In fact, 86% of ZD values under 6 m were located on continen-
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tal shelves (<200 m depth). To eliminate ZD measurements in
optically complex waters and to ensure a linear relationship
between available log-transformed ChlI matchups, all ZD mea-
surements less than 6 m were removed from the final database
product (n = 20,748; 7% of ZD measurements).

Likewise it was determined that the relationship between
available log-transformed ChlI and FU matchups (n = 6943)
was linear for FU values between 2 and 10 (Fig. 2B). FU mea-
surements greater than 10 corresponded to yellow and brown
waters. Examination of available FU, ChlI, and ZD matchups
confirmed that most FU values above 10 corresponded to
extremely low ZD depths (Fig. 2D), again indicative of optically
complex waters located closer to coastlines (Fig. 2E), which
can confound Chl derivation techniques. In fact, 78% of FU
values over 10 were located on continental shelves (<200 m
depth). In contrast, FU measurements below 2 corresponded
to indigo blue waters that contain the lowest Chl concentra-
tions. The FU technique is likely unreliable in resolving subtle
variations in Chl at these very low phytoplankton concentra-
tions, as the primary determinant of ocean color is the absorp-
tion and scattering associated with pure seawater. Although

these waters may appear uniformly dark blue on the FU scale,
Chl concentrations may vary over an order of magnitude or
more, resulting in large variability at these FU values (Fig. 2A).
To eliminate FU measurements associated with optically com-
plex waters and to ensure a linear relationship between avail-
able ChlI matchups, FU values greater than 10 or less than 2
were removed from the final database (n = 10,123; 5% of all
FU measurements). The removal of these FU and ZD mea-
surements was necessary to ensure that the requisite statistical
assumptions of the predictive models were satisfied.

The RMA regression was then used to predict ChlT. The
regression explained 64% (P < 0.0001) of the variance in ChlI

(Fig. 3A) and resulted in

ChlT = 143.29ZD
–2.082 (6)

where ChlT is the transparency-derived Chl (mg m–3). Like-
wise, the RMA regression used to derive ChlF explained 46% (P
< 0.0001) of the variance in ChlI (Fig. 3B) and resulted in

ChlF = 0.016FU2.44 (7)
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Fig. 1. Temporal and spatial availability of data. (A, D, G) Spatial availability of (A) ChlI, (D) ZD, and (G) FU color measurements. Colors depict the num-
ber of available measurements per 5° cell. (B, E, H) Average (B) ChlI, (E) ZD, and (H) FU color per 5° cell. Values were derived using B-spline interpola-
tion; white indicates lack of data. (C, F, I) Time-varying availability of (C) ChlI, (F) ZD, and (I) FU measurements. Left axis and colors depict the number
of available measurements by month and year. Right axis and points depict the proportion of total observations collected in each year, smoothed with
kernel density. Ticks on x-axes represent years containing data. 



where ChlF is the FU-derived Chl (mg m–3). All RMA regressions
conformed to the necessary statistical assumptions, such as lin-
earity, normality, constancy of variance, and independence.
Examination of the absolute Euclidean residuals from the RMA
regressions indicated that the discrepancies between the pre-
dicted Chl fields (ChlT or ChlF) and ChlI were random, and
could not be explained by any of the explanatory variables. ChlI

matchups used to predict ChlT or ChlF values were available
globally, but were more heavily distributed in the northern
hemisphere, and in near shore waters for both ZD (Fig. 3C), and
FU (Fig. 3D). ChlI and FU matchups were notably lacking in
open ocean waters (Fig. 3D). ChlI matchups were slightly less
available in boreal winter months for both datasets (Fig. 3E, 3F).

ChlT and ChlF are by definition intercalibrated with ChlI

(slope = 1, intercept = 0; Fig. 4). The accuracy of these inter-

calibrations was further verified by the strong positive correla-
tion (r = 0.70; P < 0.0001) and linear scaling observed between
log-transformed ChlF and ChlT (intercept = 0.002, slope = 1.07
± 0.01, r2 = 0.48). These calibrations were found to be insensi-
tive to the number of measurements used, except at extremely
low sample sizes. The strength of the linear relationships did
not change with decreasing sample size, nor did they appre-
ciably change with changes in the bathymetry, ocean basin,
month, or decade when the measurements were collected. The
magnitude of the estimated slopes varied randomly, rather
than systematically. These results suggest that no further inter-
calibration was required before combining historical ChlI mea-
surements with those predicted from ZD or FU.

The resulting calibrated database (ChlC) consisted of
644,916 globally distributed Chl measurements collected
between 1890 and 2010. Similar to the individual Chl
datasets, the sampling effort of ChlC was heavily distributed
over boreal summer months, and in more recent decades
(>1930; Fig. 5A). Despite the greatly increased spatial avail-
ability of ChlC measurements, the sampling effort remained
concentrated in the northern hemisphere (>30° S latitude),
over mid- to low-latitude regions, and in waters closer to
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Fig. 2. Comparing different data types. Relationship between (A) ZD and
(B) FU and ChlI. Relationships are approximated by a B-spline (knots = 4).
Vertical dashed lines represent the thresholds, beyond which the linear
relationships break down. (C-D)  Colors denote the number of mea-
surements per pixel. Relationships between ZD, FU, and ChlI. (C) ZD is
plotted against ChlI with corresponding FU values indicated as colors. (D)
FU is plotted against ChlI with corresponding ZD values indicated as col-
ors. Dashed lines represent thresholds, beyond which the linear relation-
ships deteriorate. (E-F) Sampling effort of (E) ZD and (F) FU measurements
as a function of distance from the nearest coastline. Solid lines indicate all
available data, and dashed lines are the data that are eliminated from the
database. Ticks on x-axes are the depths where the eliminated data are
sampled; dashed vertical lines indicate a distance of 1 km from the near-
est coastline. 

Fig. 3. Predicting chlorophyll from transparency and color data. Linear
RMA regression models used to derive Chl from (A) ZD and (B) FU. Confi-
dence intervals are too narrow to visually detect. Spatial availability of ChlI
and (C) ZD, and (D) FU matchups. Time-varying availability of ChlI and (E)
ZD and (F) FU matchups. Left axes and colors depict the number of avail-
able measurements by month. Right axes and lines depict the proportion
of total available measurements for each year. For all plots, colors depict
the number of available observations per pixel. 



coastlines (Fig. 5B). The ChlC measurements are available since
the 1950s in most ocean regions and before 1930 in many
North Atlantic and Pacific waters (Fig. 5C). The data span
more than 50 years in most regions of the ocean and 112 years
in some regions of the North Atlantic. Importantly, the spatial
and temporal availability of the ChlC measurements is consid-
erably increased after combining available historical data.

Spatial patterns of ChlC closely reproduced the well-known
spatial patterns of Chl derived from ChlCZCS and ChlSWFS

(Fig. 6); these include elevated chlorophyll in coastal, high-lat-
itude, and upwelling regions, as well as low chlorophyll in the
oligotrophic gyres. Although there are potential issues regard-
ing the intercalibration of ChlCZCS (Antoine et al. 2005; Gregg
and Conkright 2001), the ChlC fields were positively corre-
lated with concurrent (1° ¥ 1° ¥ 1 month bins) ChlCZCS (r =
0.76, P < 0.0001), and exhibited approximate linear scaling on
a log-scale (intercept = –0.01, slope = 0.84, r2 = 0.58; Fig. 6C;
Table 2). Likewise, ChlC measurements were positively corre-
lated with ChlSWFS (r = 0.81, P < 0.0001), and exhibited approx-
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Fig. 4. Spatial patterns of derived chlorophyll. Mean Chl concentration
from (A) ChlT and (B) ChlF per 5° cell. Relationships between available ChlI
matchups and (C) ChlT and (D) ChlF. Idealized relationships are plotted as
dashed lines and are identical to fitted RMA regression lines. Colors depict
the number of observations per pixel. 
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imate linear scaling (intercept = 0.01, slope = 0.97, r2 = 0.65;
Fig. 6D; Table 2). Interestingly, eliminating ChlFU from the
database led to improved correspondence between ChlC and
ChlCZCS (r = 0.77; intercept = -0.14; slope = 0.86), and ChlSWFS (r
= 0.82; intercept = -0.07; slope = 1). Due to the large number
of matchups, all correlation coefficients were statistically sig-
nificant.

Spatial examination of the standardized Euclidean residu-
als from the RMA regressions indicated that there was a
greater discrepancy between ChlC and ChlSWFS or ChlCZCS in
more coastal areas where Chl concentrations are on average
greater and more variable (Fig. 6E & 6F). Spatially explicit
models fitted to the residuals confirmed that residuals were,
on average, larger in areas closer to coastlines, at higher lati-
tudes, and where Chl values are greater. Since latitude, dis-
tance from the nearest coast, and Chl are collinear, univariate
models were also fitted to the residuals. The strongest single
explanatory variable to explain the residual variation in ChlC

relative to ChlCZCS or ChlSWFS was the average Chl concentra-
tion (ChlSWFS: r

2 = 0.05; P < 0.0001 and ChlCZCS: r
2 = 0.16; P <

0.0001; Fig. 7). For both matchups, the magnitude of the
residuals was insensitive to the average concentration of col-
ored dissolved organic matter (CDOM) in the water, or to
changes in the year of sampling. The relationship between
ChlC and ChlSWFS or ChlCZCS was found to be insensitive to the
number of measurements used. The strength of the relation-
ships was largely insensitive to reduced sample size, and to
the bathymetry, ocean basin, month, or decade when the
measurements were collected.

The reliability of the ChlC database rests on the assumption
that the function used to predict Chl is insensitive to the time
and location of sampling and that the error associated with
that relationship is random. We were fortunate that the large
temporal and spatial overlap between available matchups
allowed for a robust test of these assumptions; however,
matchups were not available for all times and locations.
Although matchups of ChlI with water transparency or color
were unavailable prior to 1950, the strong correlation and
approximately linear scaling between log-transformed ChlT

and ChlF matchups since 1890 confirmed the efficacy of the
algorithms used to calibrate them (Table 2). Additionally, the
methods used here require accurate measurements of ChlI to
calibrate ChlT and ChlF. ChlI measurements derived from high
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Fig. 6. Comparison with satellite data. Mean Chl concentration from (A)
ChlC and (B) ChlSWFS per 5° cell. Chl was derived using B-spline interpola-
tion; white indicates lack of data. Relationships between ChlC and (C)
ChlCZCS, and (D) ChlSWFS. Idealized relationships are plotted as dashed lines
and fitted RMA regressions are shown as solid lines. Colors depict the
number of data per pixel. (E-F) Spatial patterns of the average mean
Euclidean residuals from regression fits of ChlC and (E) ChlCZCS, and (F)
ChlSWFS per 5° cell. 

Table 2. Regression results of model II RMA models fitted to the Chl matchups from different observational platforms. Estimated
regression coefficients, error estimates, bias estimates, coefficient of determination, correlation coefficient, number of matchups, and
the temporal and latitudinal span of the available matchups are given. 

Comparison b1 b1 SE b1BIAS b0 r2 r r raw n Yr. span Lat. span

ChlI/ChlT 1.00 0.01 0.00 0.01 0.65 0.81 0.63 12841 51 154
Chlczcs/ChlT 0.84 0.02 0.00 –0.13 0.57 0.76 0.49 4376 8 141
Chlswfs/ChlT 0.97 0.03 0.00 0.04 0.69 0.83 0.58 2244 10 84
ChlF/ChlI 1.00 0.03 –0.01 0.00 0.47 0.69 0.59 6943 46 146
Chlczcs/ChlF 0.99 0.05 –0.04 –0.14 0.35 0.59 0.30 3057 8 121
Chlswfs/ChlF 0.92 0.03 –0.02 0.13 0.68 0.82 0.66 1643 10 54
Chlczcs/ChlI 0.94 0.02 0.00 –0.13 0.60 0.77 0.43 5805 8 145
Chlswfs/ChlI 1.01 0.02 0.00 –0.09 0.66 0.81 0.50 9198 12 153
ChlF/ChlT 1.07 0.01 0.00 –0.02 0.48 0.70 0.53 46180 117 156
Chlczcs/ChlC 0.84 0.01 –0.01 –0.15 0.58 0.76 0.44 9717 8 148
Chlswfs/ChlC 0.97 0.01 0.00 –0.06 0.65 0.81 0.51 10204 12 160



performance liquid chromatography (HPLC) are generally
regarded as the best performing in situ technique, but are not
readily available over long time scales. To generate a large
enough database of historical measurements, ChlI values
derived from several in situ instruments were used here.
Although some methods have been found to underestimate
Chl, relative to HPLC techniques, this error is believed to be
small (Trees et al. 1985), with the main source of ChlI vari-
ability resulting from methodological differences among
investigators (Welschmeyer 1994). Although systematic qual-
ity control techniques were used to remove measurements
associated with these sources of variability, some erroneous

ChlI measurements may persist and contribute to the unex-
plained variation in the data.

To enable comparison of the various shipboard and remote
sensing methods, the analysis was restricted to the surface
layer (upper 20 meters). The ChlC data, therefore, may not
reflect the integrated chlorophyll values, since the Chl maxi-
mum occurs much deeper in some low-latitude ocean regions
(Cullen 1982). Additionally, ChlI measurements below 20 m
are usually derived from CTD profiles of in vivo fluorescence,
and variability in the chlorophyll-to-phytoplankton biomass
(organic carbon) relationship at these depths is known to pro-
duce more uncertain abundance estimates. The use of ChlI

measurements in the upper 20 m of the water column to infer
phytoplankton biomass is a common practice (Behrenfeld et
al. 2006; Falkowski and Wilson 1992; Martinez et al. 2009),
but it is possible that changes in major oceanographic features
such as the mixed layer depth (MLD) may cause correspon-
ding vertical shifts in phytoplankton to waters deeper than 20
m (Saba et al. 2010). If such shifts were occurring, this could
cause underestimates of phytoplankton in some ocean regions
and would provide a strong incentive for in situ observational
platforms to expand the vertical sampling range.

Discussion
Here, we have demonstrated that shipboard measurements

of upper ocean water transparency and color can be integrated
to derive accurate Chl fields at global scales, and extending
120 years into the past. Following careful calibration, mea-
surements of Chl derived from different observational plat-
forms have been combined into a single publicly available
database (see web appendices). This study was conducted
using similar approaches to those developed in a previous
study (Boyce et al. 2010), but incorporating additional data
and several suggested improvements (Boyce et al. 2011;
Mackas 2011; McQuatters-Gollop et al. 2011; Rykaczewski and
Dunne 2011). First, the calibrated database presented here was
generated from a larger and more comprehensive set of mea-
surements, and includes the FU-derived Chl measurements
not previously used. Consequently, our calibrated Chl data-
base is more spatially and temporally complete, and contains
an additional 199,679 measurements. Unfortunately, we could
not include plankton color measurements from the continu-
ous plankton recorder (CPR) dataset (see Reid et al. 2003) in
our analysis. Our goal was to produce a publicly available data-
base of Chl measurements, and as the raw CPR data are pro-
prietary, we were unable to include them here. Furthermore,
the size of the CPR silk (>250 µm) is designed to sample large
zooplankton, and may not quantitatively sample smaller size
fractions of the phytoplankton.

Second, several improvements have been made to the sta-
tistical methods used to identify implausible Chl mea-
surements. Such improvements include, for instance, the
treatment of zero ChlI measurements, the identification of
erroneous CTD-derived ChlI measurements, and the use of
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Fig. 7. Variability in absolute Euclidean residuals. GAM estimates of the
square root-transformed absolute Euclidean residuals from linear RMA
models of ChlC versus ChlSWFS (red) and ChlCZCS (blue) as a function of (A)
distance from the nearest coastline; (B) bathymetry; (C) year; (D) colored
dissolved organic material (CDOM); (E) latitude; and (F) mean Chl. The
estimated trends are plotted as solid lines and shaded areas represent the
95% Bayesian credible limits for the trends. 



spatial filters. Last, the Chl measurements presented here were
directly calibrated from a database of independent, quality
verified in situ Chl measurements, rather than from a previ-
ously established algorithm. Further, the calibration algo-
rithms were developed using an unprecedented number of
quality controlled in situ Chl measurements (n = 12,841 Secchi
matchups; n = 6943 Forel-Ule matchups); this represents a
considerable improvement over the number of matchups typ-
ically used to calibrate chlorophyll fields from remotely sensed
water-leaving radiances (n = 60 CZCS matchups; n = 2853
SWFS matchups) (Evans and Gordon 1994; O’Reilly et al.
2000). This increases confidence in our approach and allows
for a robust verification of the statistical assumptions of the
calibration and validation methods.

The database of calibrated chlorophyll measurements pre-
sented here remains undersampled, as there are still some
large data gaps, particularly in the Southern hemisphere.
Despite this, we believe that the available data can and should
be used to explore trends in global or regional phytoplankton
dynamics before the satellite era (1979–86, 1997–2010). The
separation of yearly-to-decadal fluctuations from longer-term
phytoplankton dynamics is a frequently acknowledged chal-
lenge (Behrenfeld et al. 2006; Henson et al. 2010; Martinez et
al. 2009), and is directly related to the scarcity of calibrated
phytoplankton abundance measurements in the pre-satellite
era (<1978). This lack of an adequate dataset may be partially
responsible for the large variability in estimated trends in
regional or global phytoplankton concentrations or primary
production (Antoine et al. 2005; Behrenfeld et al. 2006;
Falkowski and Wilson 1992; Gregg et al. 2005; Gregg and
Conkright 2002; Gregg et al. 2003; Venrick et al. 1987).
Accordingly, the calibrated global phytoplankton time series
presented here may enable the assessment of ocean biological
variability over a range of time and spatial scales and help in
establishing the ‘missing baseline’ (Pauly 1995) against which
to compare contemporary trends and estimates. Given the
broad importance of phytoplankton to global marine ecosys-
tems and processes (Behrenfeld 2011; Falkowski 2012), the
potential applications of the calibrated phytoplankton time-
series are considerable. To facilitate optimal use of the
described dataset, we make it available as a web appendix to
this paper. The data set is presented as a user-friendly text file
that can be easily imported into most software platforms or in
a spreadsheet. The associated metadata is also contained in the
header of this file and includes a description of the variables
included in the data set, the units they are measured in, the
relevant citation for the data set, and contact information if
users have any relevant questions.

Comments and recommendations
For those seeking to analyze these data, several attributes

must be considered. First, to accurately calibrate Secchi and
Forel-Ule measurements, we eliminated all measurements
close to coastlines, all in situ Chl measurements below a depth

of 20 m, all Secchi measurements less than 6 m, and all Forel-
Ule measurements with a color value of less than 2 and greater
than 10. Although this was necessary to ensure the accuracy
of calibration algorithms, the resulting database should not be
considered to represent a complete phytoplankton inventory.
Second, since the calibrated Chl values were derived from
deterministic models, they contain no measurement error and
are thus considered non-random. Alternately, the in situ Chl
measurements were not derived from a model; thus, they con-
tain measurement error and are considered random. Hence
the calibrated values will, on average, contain the same mean
as the in situ measurements but will have a lower variance.
Last, spatial and temporal matchups between Chl mea-
surements derived from different sensors, and observational
platforms are necessary for calibration and validation, but
may violate the assumption of independence required by
many statistical analyses.
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