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ABSTRACT: Large benthic decapods play an increasingly important role in commercial fisheries
worldwide, yet their roles in the marine ecosystem are less well understood. A synthesis of exist-
ing evidence for 4 infraorders of large benthic marine decapods, Brachyura (true crabs), Anomura
(king crabs), Astacidea (clawed lobsters) and Achelata (clawless lobsters), is presented here to
gain insight into their ecological roles and possible ecosystem effects of decapod fisheries. The
reviewed species are prey items for a wide range of invertebrates and vertebrates. They are
omnivorous but prefer molluscs and crustaceans as prey. Experimental studies have shown that
decapods influence the structuring of benthic habitat, occasionally playing a keystone role by sup-
pressing herbivores or space competitors. Indirectly, via trophic cascades, they can contribute to
the maintenance of kelp forest, marsh grass, and algal turf habitats. Changes in the abundance of
their predators can strongly affect decapod population trends. Commonly documented non-
consumptive interactions include interference-competition for food or shelter, as well as habitat
provision for other invertebrates. Anthropogenic factors such as exploitation, the creation of pro-
tected areas, and species introductions influence these ecosystem roles by decreasing or increas-
ing decapod densities, often with measurable effects on prey communities. Many studies have
investigated particular ecosystem effects of decapods, but few species were comprehensively
studied in an ecosystem context. A simplified synthetic framework for interpreting ecosystem
roles of decapods was derived from the available evidence; however, more experimental and
long-term observational studies are needed to elucidate mechanisms and shed light on the long-
term consequences of decapod fisheries.
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INTRODUCTION

Large crustaceans are becoming increasingly im-
portant to coastal and continental shelf fisheries
(Anderson et al. 2011, Steneck et al. 2011). For exam-
ple, in eastern North America, a well-documented
shift has occurred from groundfish, such as Atlantic
cod Gadus morhua, to invertebrates that now domi-
nate commercial landings and value (Worm & Myers
2003, Frank et al. 2005). Globally, commercial catches
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of crustaceans have increased ~5-fold since 1950 and
are the only invertebrate group that continues to
trend upward in recent years (Anderson et al. 2011).
Yet, when compared to finfish, there is a much
smaller knowledge base available from which to
manage these fisheries, particularly in an ecosystem
context (Anderson et al. 2008). Large mega-decapods,
defined here as decapod crustaceans with a carapace
length (CL) or width (CW) of >10 cm, such as Ameri-
can lobster Homarus americanus and snow crab
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Chionoecetes opilio, have become particularly im-
portant commercial species in the Northwest (NW)
Atlantic region and elsewhere. Decapod crustaceans
have a global distribution and can be found in most
habitats, ranging from intertidal to deep water re-
gions. Their importance to humans is well docu-
mented and frequently discussed (Steneck et al.
2011), however we are only beginning to understand
the role that decapods play in marine ecosystems,
and how exploitation might modify this role.

Interest in the ecological effects of fisheries often
tends to focus on large apex predators and their role
in the ecosystem (e.g. Pauly et al. 1998, Jackson et al.
2001, Frank et al. 2005, Heithaus et al. 2008, Baum &
Worm 2009, Estes et al. 2011). One of the commonly
described ecosystem effects of fishing marine preda-
tors has been an increase in benthic invertebrates,
including large decapod crustaceans (Baum & Worm
2009, Boudreau & Worm 2010). On occasion large
decapods may replace large fish (e.g. Atlantic cod) as
the dominant predator, the ecological impacts of
which are poorly understood (e.g. Steneck et al.
2011). One well-documented example is a shift in the
NW Atlantic ecosystem's trophic structure in the
1980s to 90s due to the depletion of top predators.
Here, an observed decline in groundfish abundance
(largely due to overexploitation) was followed by a
large increase in benthic decapods and other prey
species, likely because of predation release (Steneck
et al. 2004, Worm & Myers 2003, Frank et al. 2005). In
contrast, the North Pacific Ocean currently yields low
decapod abundance (e.g. king crab Paralithodes
camtschaticus, snow crab Chionoecetes opilio, and
shrimp Pandalus spp.) due to population collapses in
the early 1980s (Orensanz et al. 1998). These popula-
tions have since been slow to recover. As decapod
stocks were low in Alaska, the biomass of groundfish
(i.e. Walleye pollock Theragra chalcogramma) in-
creased to an all-time high (Ianelli et al. 2011). This
suggests that there may be a suite of conditions
within an oceanic system that, once altered by fish-
ing, are better suited for supporting decapod crus-
taceans or large-bodied groundfish (Worm et al.
2007). Yet, the broader ecological consequences of
such changes in decapod populations on the benthic
ecosystem are less well understood.

Many studies have focused on the diet of large
marine decapods, but little is known about the
strength of predatory interactions, their cascading,
and overall ecosystem effects. Predation generally
plays a strong role in structuring marine benthic
communities (Shurin et al. 2002), ranging from inter-
tidal shores (e.g. Paine 1994) to the deep sea (e.g.

Micheli et al. 2002), but few experimental studies
have focused on large decapods. Decapods are typi-
cally quite mobile, undergo ontogenetic habitat
changes over their life cycle, and show a progressive
dietary shift with increasing size (Sainte-Marie &
Chabot 2002). It is therefore likely that they would
affect a range of habitat and prey types over their life
cycle.

In this paper we attempt to synthesize what is
known about the role of large benthic decapods (lob-
sters and large crabs) in marine ecosystems. Specifi-
cally we review their multiple roles as (1) prey, (2)
predators and keystone species, as well as (3) non-
consumptive interactions. Finally, given the large
role humans play in modifying natural systems (Estes
et al. 2011), we ask how anthropogenic factors mod-
ify the ecosystem role of decapods, and how future
research efforts could provide deeper insights into
these questions.

METHODS

The above questions are addressed by synthesiz-
ing the existing evidence from mega-decapod popu-
lations worldwide. A literature search was conducted
using the Web of Knowledge database and the fol-
lowing keywords: decapod ecosystem effect (52
results), lobster ecosystem effect (109), crab ecosys-
tem effect (347), lobster diet (456), and crab diet
(1570). These papers, as well as references cited
therein, form the basis of this review. Specifically, we
were interested in case studies of the different roles
all species of mega-decapod (CL or CW >10 cm) play
in oceanic ecosystems. However, the majority of the
mega-decapods studied in the literature were of
commercial value, hence this review is necessarily
biased towards those species.

Available publications employed a variety of meth-
ods including decapod exclusion experiments in the
field (e.g. Quijon & Snelgrove 2005b), experimental
transplants (e.g. Robles & Robb 1993), tethering
experiments (e.g. Silliman & Bertness 2002), and diet
studies (e.g. Jewett & Feder 1982). These were used
primarily to gain mechanistic insights into potential
predator—prey mechanisms and interactions. Experi-
ments in the laboratory were also used, often in con-
cert with field observations and surveys. Non-con-
sumptive interactions were studied using similar
methods as those listed above, e.g. observations on
collected animals (e.g. Dvoretsky & Dvoretsky 2008),
field (e.g. Novak 2004) and lab experiments to
observe interactions (e.g. Williams et al. 2006), or a
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combination of field and lab studies (e.g. Jones &
Shulman 2008). At larger spatial and temporal scales,
time series analyses were used to complement
smaller-scale mechanistic studies. These might exa-
mine ecosystem changes occurring in the wake of
decapod exploitation (e.g. Lafferty 2004, Shears et al.
2006) or recovery (e.g. Babcock et al. 1999).

SPECIES

The species addressed in this paper are large ben-
thic invertebrates of the order Decapoda, belonging
to the following infraorders: Brachyura (true crabs),
Anomura (king crabs), Astacidea (clawed lobsters)
and Achelata (clawless lobsters). Most of these spe-
cies are well known, largely due to their commercial
value (Table 1).

Most of the brachyurans included in this review,
with the exception of the tanner crab Chionoecetes
bairdi and Dungeness crab Metacarcinus magister
(formerly Cancer magister) (north Pacific Ocean), are
native to the northwestern Atlantic Ocean, such as
the blue crab Callinectes sapidus, snow crab Chio-
noecetes opilo (co-occurs in the north Pacific), and
the rock crab Cancer irroratus. Also mentioned are
the Jonah crab Cancer borealis and green crab Car-
cinus maenas. The green crab is the smallest deca-
pod described here, reaching a maximum CW of 9 to
10 cm (Klassen & Locke 2007). Originally native to
Europe it was introduced to eastern North America
in the 19th century (Grosholz & Ruiz 1996) and has
since been identified as one of the world's most inva-
sive marine species (Lowe et al. 2000). Part of its suc-
cess may be due to lower rates of parasitism and
larger size in its introduced range (Torchin et al.
2001). The green crab's range, habitat, and prey field
overlaps with important commercial species in the
NW Atlantic, namely American lobster, rock and
Jonah crabs. Its interactions will be discussed within
this context.

King crabs (Family Lithodidae) belong to one of the
youngest decapod families (Thatje et al. 2005) and
may have originally evolved from hermit crabs (Cun-
ningham et al. 1992). Red king crab Paralithodes
camtschaticus is possibly one of the largest extant
arthropods; large individuals can weigh >10 kg and
measure up to 22 cm in CL. This species is native to
the northeastern Pacific Ocean where it is commer-
cially harvested. It has also been introduced into the
Barents Sea. Other lithodids discussed here include
the northern stone crab Lithodes maja, stone crab
Paralomis spp., and Neolithodes spp.

Clawed lobsters discussed here are the American
lobster Homarus americanus native to the NW Atlan-
tic Ocean and the European lobster H. gammarus in
the northeast Atlantic. Clawless lobsters include sev-
eral species of spiny lobster, such as Panulirus inter-
ruptus (California), P. marginatus (Hawaii), and Ca-
ribbean P. argus (Florida, Bahamas), and the spiny
rock lobsters Jasus edwardsii (New Zealand), P. cyg-
nus (western Australia), and J. lalandii (South Africa).

There are important morphological differences be-
tween the crabs, clawed and clawless lobsters in-
cluded in this study. Whether a species has claws
influences how it interacts with habitat, conspecifics,
predators and prey. For example, the American lob-
ster's claws allows it to manipulate substrates for
shelter, establish rank, capture prey and defend itself
(Lawton & Lavalli 1995). Clawed lobsters are often
aggressive (Scrivener 1971), and form dominance
hierarchies (Karnofsky & Price 1989, Atema & Voight
1995). In clawless lobsters, defensive structures are
limited to their robust antenna and armoured cara-
pace (Atema & Cobb 1980, Barshaw et al. 2003), and
they are often associated with conspecifics (Herrn-
kind 1969).

ECOSYSTEM EFFECTS
Mega-decapods as prey

Most of the large decapods considered here (Table 1)
have relatively few predators once they become
adults due to their large size and armoured cara-
paces; yet they can be very vulnerable to predation at
earlier life stages. In addition to humans, some fish,
birds, marine mammals and cephalopods are known
to prey on these species at various stages.

Examples of fish predators include the Nassau
grouper Epinephelus striatus (Eggleston et al. 1997)
and grey triggerfish Balistes capriscus (Lavalli & Her-
rnkind 2009), which both prey on the Caribbean
spiny lobster Panulirus argus; Pacific cod Gadus ma-
crocephalus prey on snow crabs Chionoecectes spp.
(Jewett 1982); and sculpins Myoxocephalus spp. con-
sume benthic stages of American lobsters (e.g. Han-
son & Lanteigne 2000, Hanson 2009, Boudreau &
Worm 2010). Cephalopods and sharks are also re-
ported to prey on decapods, for example the Carib-
bean reef octopus Octopus briareus occasionally con-
sumes P. argus (e.g. Berger & Butler 2001, Butler &
Lear 2009) and the leopard shark Triakis semifasciata
preys on Dungeness crab (third most important prey
item; Ebert & Ebert 2005).
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Table 1. Examples of studies examining ecological roles of large marine decapods. Indicated are regions of study, common and
scientific names of the decapod species, type of interaction, nature of the evidence, and sources. Listed alphabetically by

scientific name

Casco Bay, Maine to Chesapeake Bay, Virginia;
NW Atlantic

Chesapeake Bay, Maryland; NW Atlantic

Monterey Peninsula, California; NE Pacific

NE Newfoundland; NW Atlantic

Bonne Bay, Newfoundland; NW Atlantic

Bonne Bay, Newfoundland; NW Atlantic

Alaska, Japan, Russia; North Pacific

Gulf of St. Lawrence; NW Atlantic

Bonne Bay, Newfoundland; NW Atlantic

Gulf of Maine; NW Atlantic

SW Nova Scotia; NW Atlantic
Narragansett Bay, Rhode Island; NW Atlantic

Isle of Shoals, New Hampshire; NW Atlantic
Gulf of Maine; NW Atlantic
Passamaquoddy Bay, New Brunswick; NW Atlantic
Northumberland Strait, Southern Gulf of

St. Lawrence; NW Atlantic
Magdalen Islands, Gulf of St. Lawrence; NW Atlantic
Magdalen Islands, Gulf of St. Lawrence; NW Atlantic
Southern Gulf of St. Lawrence; NW Atlantic
Southern Gulf of St. Lawrence; NW Atlantic
Lundy no-take zone, UK; NE Atlantic

Tawharnui and Mimiwhangata Marine Parks,
New Zealand; SW Pacific

Leigh Reserve, New Zealand; SW Pacific

Saldanha Bay Reserve, South Africa; SE Atlantic

Antarctic Bellingshausen Sea, Southern Ocean

Bamfield, Britsh Columbia; NE Pacific

Willipa Bay, Washington; NE Pacific

Humbolt Bay, California; NE Pacific

Gray's Harbor, Washington; NE Pacific

Florida Bay, Florida; NW Atlantic

Florida Keys National Marine Sanctuary, Florida;
NW Atlantic

Lee Stocking Island, Bahamas; NW Atlantic

Florida Keys, Florida; NW Atlantic
Western Australia; E Indian Ocean

Santa Catalina Island, California; NE Pacific

Channel Islands National Park, California; NE Pacific
Santa Catalina Island, California; NE Pacific

Northwestern Hawaiian Islands; NE Pacific
Barents Sea, Arctic Ocean

Kodiak Island, Alaska; NE Pacific
Barents Sea, Arctic Ocean

Blue crab, green crab

Blue crab

Cancer crab

Snow crab

Snow crab

Snow crab

Snow crab, tanner crab

Snow crab, rock crab

American lobster,
rock crab, green crab
American lobster
American lobster,
Jonah crab
American lobster,
Jonah crab
American lobster,
rock crab
American lobster,
rock crab
American lobster,
rock crab
American lobster,
rock crab
American lobster,
rock crab
American lobster,
rock crab
American lobster,
green crab
European lobster

Spiny rock lobster

Spiny rock lobster

Rock lobster

King crab

Dungeness crab
Dungeness crab
Dungeness crab
Dungeness crab
Caribbean spiny lobster
Caribbean spiny lobster
Caribbean spiny lobster

Caribbean spiny lobster
Western rock lobster

Spiny lobster

Spiny lobster
Spiny lobster

Spiny lobster
Red king crab
Red king crab

Red king crab,
Northern stone crab

Callinectes sapidus, Carcinus
maenas

Callinectes sapidus

Cancer spp.

Chionoecetes opilio
Chionoecetes opilio
Chionoecetes opilio
Chionoecetes opilio, C. bairdi

Chionoecetes opilio,
Cancer irroratus
Homarus americanus, Cancer
irroratus, Carcinus maenas
Homarus americanus
Homarus americanus,
Cancer borealis
Homarus americanus,
Cancer borealis
Homarus americanus,
Cancer irroratus
Homarus americanus,
Cancer irroratus
Homarus americanus,
Cancer irroratus
Homarus americanus,
Cancer irroratus
Homarus americanus,
Cancer irroratus
Homarus americanus,
Cancer irroratus
Homarus americanus,
Carcinus maenas
Homarus gammarus

Jasus edwardsii

Jasus edwardsii

Jasus lalandii

Lithodes spp., Paralomis spp.,
Neolithodes spp.

Metacarcinus magister

Metacarcinus magister

Metacarcinus magister

Metacarcinus magister

Panulirus argus

Panulirus argus

Panulirus argus

Panulirus argus
Panulirus cygnus

Panulirus interruptus

Panulirus interruptus
Panulirus interruptus

Panulirus marginatus
Paralithodes camtschaticus
Paralithodes camtschaticus

Paralithodes camtschaticus,
Lithodes maia

Region Common name(s) Scientific name(s) Interaction
Beaufort Inlet, North Carolina; NW Atlantic Blue crab Callinectes sapidus Host

Back Sound, North Carolina; NW Atlantic Blue crab Callinectes sapidus Predator

Sapelo Island, Georgia; NW Atlantic Blue crab Callinectes sapidus Keystone predator

Predator, prey
Cannibalism
Prey

Predator
Predator
Predator

Prey

Predator
Predator

Predator
Competitor

Predator

Niche segregation
Predator

Predator, prey
Predator, prey
Predator, prey
Host, vector
Competitor
Abundance

Trophic cascade

Trophic cascade
Predator, prey
Predator
Predator
Behaviour

Prey

Predator

Prey

Prey

Prey

Prey
Predator

Predator

Trophic cascade
Keystone predator

Prey
Predator

Predator
Host
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Table 1 (continued)

Mechanism Method Sources

Barnacles Octolasmis mulleri living on gills Lab, field Walker (1974)

Crabs consumed more clams Mercenaria mercenaria at vegetated sites possibly Field Micheli (1997),

avoiding bird predation Micheli & Peterson (1999)
Crabs control periwinkle capable of overgrazing salt marsh vegetation Field Silliman & Bertness (2002)
Blue crab predation limits abundance and range of invasive green crab Lab, field DeRivera et al. (2005)
Cannibalism by large blue crabs was 75-97% of mortality of juveniles Lab, field Hines & Ruiz (1995)
Cancer spp. crab are a dietary component of the general consumer, the sea otter Field Estes et al. (2003)
Predation on juvenile snow crab, polychaetes, shrimp and fishes Stomachs Squires & Dawe (2003)
Predation influenced composition, abundance, and diversity of benthic infauna Lab, field Quijon & Snelgrove (2005b)

Predation on algae, fish, polychaetes, crustaceans, molluscs, echinoderms

Chionoecetes prey for 7 invertebrates, 24 fish, 2 skates, and 4 marine mammal
species

Rock crab decreased infaunal species richness. Infaunal density and diversity
increased with the exclusion of the crabs. Clear effect on species composition

Nocturnal feeding on crabs, mussels, periwinkles. Believed to migrate up into the
intertidal zone to prey on green crabs

65 prey taxa identified, mostly echinoderms, molluscs, crustaceans and polychaetes

Jonah crab choose to utilize alternative shelter when lobster present

Crabs and lobster significant predators of sea urchins, indirect effects on ascidians
and mussels
Rock crab densities higher on kelp fronds when lobsters were present

Sea urchins avoided rock crabs and lobsters, no aggregations formed when
decapods present

Fish predation on lobster uncommon. Lobster mainly prey on crab, sea stars and
lobster

Diet shift with increased size of lobster. Rock crab was part of diet at all sizes

Lobsters condition, growth and development increased with increasing amounts of
rock crab in their diet

Non-indigenous ascidians Botrylloides violaceus were found on rock crabs,
Botryllus schlosseri was found on lobster

Green crab outcompeted juvenile lobster for food

Increased abundance and legal-sized lobster inside the NTZ, spillover of sublegal
lobster

In no-take area, lobster abundance increased 11 times and biomass 25 times since
establishment. Lower densities of sea urchins and expanding kelp forest in
no-take reserves

Protection of lobsters and fish resulted in higher predation on urchins resulting in
increased kelp cover

Rock lobsters prey on whelks and settling mussels. Lobsters transferred to other
island were overwhelmed, consumed by whelks.

Lithodid crabs recolonizing Antarctica may restructure the benthic community via
predation and bioturbation

Cancer spp. including Dungeness, are able to exert biting forces (claws) greater
than most other animals.

Invasive cord grass restructured habitat, altered movement and foraging behaviour
of indigenous Dungeness crab

Dungeness crab had an 11.6% index of relative importance in the diet of female
leopard sharks

First year crabs preyed on bivalves, small crustaceans (incl. conspecifics). Second
and third year preyed upon Crangon spp. and fish

Octopus is assumed predator of lobster. Lobster detected chemical cues to avoid
octopus dens.

Juvenile lobsters preyed upon by Caribbean reef octopus

Abundance of small lobsters was highest in small reefs where Nassau grouper were
experimentally removed

Grey triggerfish preyed on tethered lobsters

Stable isotope analysis showed amphipods, isopods, crabs, bait, foliose red algae
and sponges in lobster diet

Exclusion of lobsters from upper shore results in increases in density/size of mussels
and herbivorous molluscs, and decrease in algae

Fishing of lobster led to increase in sea urchins, overgrazing of kelp forests

Exclusion of lobsters (keystone) from wave-exposed rocky intertidal sites caused
algal turf to be replaced by mussels

Hawaiian monk seals were observed foraging on spiny lobster, but not a major
prey item

Predation by crabs decreased abundance of sea urchin, sea stars, and Iceland scallop

Stomach contents revealed molluscs and arthropods to be preferred prey
Hydrozoans, polychaetes, bivalves, amphipods, cirripedes, bryozoans were
described on both species of crab

Field, stomachs
Review

Lab, field

Lab, field, stomachs

Stomachs
Lab

Field
Lab, field
Lab, field
Stomachs
Stomachs
Lab

Field

Lab

Field

Field, time series

Field, time series
Lab, field

Field

Lab

Lab, field
Stomachs
Stomachs

Lab, field

Field

Field

Lab, field

Lab, field, stomachs

Field

Field
Field

Field
Lab

Stomachs
Field

Wieczorek & Hooper (1995)
Jewett (1982)

Quijon & Snelgrove (2005a)
Jones & Shulman (2008)

Elner & Campbell (1987)
Richards & Cobb (1986)

Siddon & Witman (2004)
Wells et al. (2010)
Vadas et al. (1986)
Hanson (2009)
Sainte-Marie & Chabot (2002)
Gendron et al. (2001)
Bernier et al. (2009)
Rossong et al. (2006),
Williams et al. (2006)
Hoskin et al. (2011)
Shears et al. (2006)
Babcock et al. (1999),
Babcock (2003)
Barkai & McQuaid (1988)
Thatje et al. (2005),
Smith et al. (2011)
Taylor (2000)
Holsman et al. (2010)
Ebert & Ebert (2005)
Stevens et al. (1982)
Berger & Butler IV (2001)
Butler IV & Lear (2009)
Eggleston et al. (1997)

Lavalli & Herrnkind (2009)
Waddington et al. (2008)

Robles (1987)

Lafferty (2004)
Robles & Robb (1993),
Robles (1997)
MacDonald (1982),
Goodman-Lowe (1998)
Jorgensen (2005),
Jorgensen & Primicerio (2007)
Jewett & Feder (1982)
Dvoretsky & Dvoretsky (2008)
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Avian predators such as the herring gull Larus
agentatus and ring-billed gull L. delawarensis com-
monly feed on crabs, e.g. green or rock crabs (e.g.
Dumas & Witman 1993); likewise herons were ob-
served to prey on blue crabs (Micheli 1997). Marine
mammals, for example the Hawaiian monk seal
Monachus schauinslandi, occasionally feed on vari-
ous crustaceans including spiny lobsters P. margina-
tus (MacDonald 1982, Goodman-Lowe 1998). Deca-
pods have not been identified as a major dietary
component of seals or sea lions (Goodman-Lowe
1998, Beck et al. 2007, Boudreau & Worm 2010). Sim-
ilarly, Cancer spp. crabs are found in the diet of sea
otters Enhydra lutris in the Pacific (Estes et al. 2003).

Of course most decapod species have multiple
predators across their life cycle. Crabs of the genus
Chionoecetes, for example, are known to be con-
sumed by at least 7 species of invertebrates (includ-
ing conspecifics, red king crab, and the sea star Aste-
rias amurensis), 24 species of bony fish, 2 species of
skate and 4 species of marine mammals. Most of
these interactions were reported from the North
Pacific, with the exception of predation by Atlantic
cod on C. opilio (as well as cannibalism in C. opilio)
in the Gulf of St. Lawrence (Jewett 1982 and refer-
ences therein). In the northwest Gulf of St. Lawrence,
SCUBA divers observed 2 incidences of C. opilio
males holding dead, recently moulted mature fe-
males that were being consumed by whelks Buc-
cinum undatum. Additional dead females and imma-
ture female exuviae were observed being consumed
by lysianassoid amphipods (Sainte-Marie & Hazel
1992).

Likewise, a number of bony fish and elasmo-
branchs prey on American lobster, Cancer spp., snow
crab, and blue crab, at varying rates (e.g. Moss 1972,
Robichaud et al. 1991, Rountree & Able 1996, Ste-
neck 1997, Boudreau & Worm 2010, Boudreau et al.
2011). Some predators may be more important than
others; in the soft substrates of the Southern Gulf of
St. Lawrence, the shorthorn sculpin Myoxocephalus
scorpius was the only demersal fish to consume large
amounts of American lobsters (2.6% frequency of
occurrence, 28.9% biomass). Small amounts of lob-
ster larvae were detected in pelagic fishes such as
herring Clupea harengus, American shad Alosa
sapidissima, and rainbow smelt Osmerus mordax;
amounts were roughly proportional to their availabil-
ity in the water column, suggesting random uptake of
lobster larvae while filter-feeding zooplankton (Han-
son 2009).

Predation risk is often increased at the post-settle-
ment stage, when pelagic larvae recruit to benthic

habitats. Substrate choice can have strong effects on
species vulnerabilities to predation at this stage. For
example, rock crabs settled at higher densities than
lobster and were less selective of substrate, as they
were found on both cobble and sandy substrate,
whereas lobster clearly preferred cobble (Palma et al.
1998, 1999). Densities of post-settlement rock crabs,
but not lobsters, increased in predator exclusion
experiments (Palma et al. 1998, 1999).

In studies of spiny lobsters, early benthic phase
individuals were vulnerable to predation and suf-
fered high mortality from fishes and motile inverte-
brates (crabs and octopus) (Butler et al. 2006). Exper-
iments confirmed that the abundances of juvenile
lobster Panulirus argus increased on artificial patch
reefs from which groupers Epinephelus striatus were
removed (Eggleston et al. 1997). One interesting
study documented that rock lobster Jasus lalandii
could be overwhelmed and ingested by whelks Bur-
nupena spp., reversing the typical predator-prey
relationship between these 2 species (Barkai &
McQuaid 1988). Another demonstrated that Dunge-
ness crab feeding switched from fish to crustaceans
in the late spring, specifically preying upon the
newly settled first instar conspecifics (Stevens et al.
1982).

We conclude that decapods form a supplementary
food source for a wide variety of predators, ranging
from gastropods to mammals, but that most species
appear to be used opportunistically. There is little
evidence that any predator species largely depends
on the mega-crustaceans in their diet, with the
exception of decapods preying on each other, which
will be explored in the following section.

Mega-decapods as predators

Lobsters and crabs are often assumed to be detri-
tivores and scavengers, yet in reality they exhibit a
wide range of feeding strategies and behaviours. In
fact, all species considered in this study actively
prey on a variety of benthic invertebrates. Most
studies have found that they are generalists that
feed at more than one trophic level (omnivory), with
preferences of particular prey species dependent on
the area in which they are foraging (e.g. Jewett &
Feder 1982, Wieczorek & Hooper 1995, Squires &
Dawe 2003) Their diet may include gastropods,
bivalves, chitons, crustaceans, sea urchins, sea stars,
polychaetes, algae and occasionally, fish (e.g. Jewett
& Feder 1982, Stevens et al. 1982, Elner & Campbell
1987, Lawton 1987, Robles 1987, Wieczorek & Hoo-
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per 1995, Cox et al. 1997, Squires & Dawe 2003,
Hanson 2009). Other decapods and even con-
specifics are also consumed, including their moulted
exoskeletons (e.g. Jewett 1982, Stevens et al. 1982,
Elner & Campbell 1987, Wieczorek & Hooper 1995,
Hanson 2009). Prey size tends to increase, and spe-
cies preferences change with the size of the animal
(e.g. Stevens et al. 1982, Robles et al. 1990, Sainte-
Marie & Chabot 2002, Squires & Dawe 2003, Han-
son 2009), likely reflecting their changing ability to
manipulate larger and better defended organisms
as they grow. Large decapods can often overpower
the defenses of their prey, for example by crushing
mussel shells (Robles et al. 1990). Decapods often
have prey species in common with other inverte-
brates and fish (e.g. Robles 1987). There is a large
body of literature documenting the range of diet
items consumed by crabs and lobsters (Table 1), but
much less is known about their effects on prey pop-
ulations and communities.

The sympatric American lobster and rock crab are
often studied in comparison. Rock crab consistently
emerges in the literature as the lobster's preferred
prey. Additionally, rock crab are also important to the
somatic and gonadal growth of the American lobster
(Gendron et al. 2001). This important dietary compo-
nent for lobster is consistent and evident throughout
its ontogenesis, but the contribution of crab, as well
as their average size, increase with the size of the
lobster (from 7 % of stomach volume contents for the
smallest lobster to 53 % for the largest; Sainte-Marie
& Chabot 2002).

While American lobster and rock crab are typically
found in highly structured hard-bottom habitats, they
are also present in regions characterized by soft sub-
strates, such as the southern Gulf of St. Lawrence
(SGSL), NW Atlantic. In the SGSL, rock crab were an
important diet item in the stomachs of lobsters >40 mm
CL (45 to 68% of prey biomass, 30 % moulted cara-
paces, according to Hanson 2009). Additional prey
items were small sea stars Asterias vulgaris (3.8—
10.5 % prey biomass) and lobsters (0.7-12.9 % of prey
biomass, 70% were moulted carapaces) with mol-
luscs, polychaetes and fish remains (cunner Tautogo-
labrus adspersus, three-spined stickleback Gasteros-
teus aculeatus, and herring) not exceeding 7.5% of
the prey biomass (Hanson 2009).

Rock crab themselves were suggested to play an
important role in structuring benthic communities,
by influencing species composition and abundance,
for example in Bonne Bay, Newfoundland (Quijon &
Snelgrove 2005a,b). Both rock and snow crab were
reported to be the most abundant and frequently en-

countered predators in Bonne Bay. When the crabs
were experimentally excluded from the benthos, the
polychaete Pholoe tecta and the clam Macoma cal-
carea came to dominate the benthic infauna, result-
ing in increased species richness overall (Quijon &
Snelgrove 2005a). Hence, crab fisheries may have
indirect effects on benthic community structure (ab-
undance, composition and diversity) by reducing crab
predation on infauna (Quijon & Snelgrove 2005a,b).

Decapods are often effective predators utilizing a
variety of behavioural strategies. For example, in
Southern California, spiny lobsters Panulirus inter-
ruptus like most decapods are intolerant to exposure,
and hence forage on intertidal mussels Mytilus spp.
on the evening high tide (Robles et al. 1990). There
were shore-level differences in the mussels described
in the study, with low-shore mussels having thinner
shells than those in the upper zone. Large lobsters
were observed to use trial and error to kill lower shore
mussels before the thicker-shelled forms (Robles et al.
1990). When spiny lobsters were experimentally ex-
cluded from the upper shore, a significant increase in
the density and size of mussels and herbivorous mol-
luscs was observed, which indirectly decreased un-
derstory algal cover (Fig. 1A-C) (Robles 1987). Hence,
lobster predation on mussels had multiple direct and
indirect effects on this intertidal ecosystem.

Occasionally, decapod predators have been sug-
gested to be keystone species (Table 1, Fig. 1) sensu
Power et al. (1996), i.e. having a strong impact on the
community, which is disproportionally large relative
to their abundance. In the NW Atlantic, blue crabs
were described as the keystone predators in salt
marshes by being responsible for the regulation of
marsh grass cover through a 3-level trophic cascade
(Silliman & Bertness 2002). Prior to this study, salt
marshes had been mostly described as bottom-up
regulated systems driven by nutrient inputs (e.g.
Valiela & Teal 1979), however a series of field exper-
iments provided evidence that salt marshes may also
be controlled by consumers. Blue crabs preyed on the
herbivorous periwinkle Littoraria irrorata preventing
it from decimating marsh grass Spartina spp., which
would convert the complex habitat to mudflats
(Fig. 1D-F). Using a variety of experimental meth-
ods, this cascade was found to occur when the peri-
winkle was at moderate to high densities. Based on
these experimental findings, overfishing of blue crab
was proposed as a possible mechanism contributing
to the massive die-off of salt marshes in the southeast
USA (Silliman & Bertness 2002).

Similar drastic effects were observed at wave-
exposed rocky intertidal sites along Santa Catalina
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Fig. 1. Case studies exemplifying strong ecosystem effects of large decapods. Images: effects of decapod presence (left col-
umn) versus absence (right column). (A) Spiny lobster Panulirus interruptus preying on mussels in the wave-exposed rocky in-
tertidal in California. (B) Exclusion of lobster caused algal turf to be replaced by mussels. (C) Mean number of mussels per
230 cm? sampled after 10 mo, where lobsters were present (shaded) or excluded (open) (after Robles & Robb 1993, Robles et al.
2001). (D) Spartina marsh grass in the tall zone with blue crab Callinectes sapidus predators excluded and low densities of
grazing Littoraria irrorata versus (E) high densities of the same species in the same zone. (F) Spartina biomass (g dry wt m™?) in
the tall marsh zone after 8 mo of blue crab exclusion, in relation to Littoraria density (after Silliman & Bertness 2002). (G) Lush
kelp habitat resulting from the recovery of spiny lobster Jasus edswardii and snapper Pagurus auratus populations in Leigh
Marine Reserve, New Zealand. (H) Urchin barrens, dominated by the sea urchin Evechinus chloroticus at the same site prior to
establishment of the reserve. (I) Habitat shift at Leigh from 1978 to 1996 with kelp (shaded bars) and urchin (open) densities in
numbers m~2 (after Babcock et al. 1999, Babcock 2003)

Island, California, where the exclusion of spiny lob-
sters Panulirus interruptus resulted in the complete
and persistent replacement of a red algal turf by
mussel Mytilus spp. beds; an example of keystone
predation (Fig. 1A-C). At wave-protected sites, how-
ever, the lobsters were foraging on mussels jointly
with carnivorous fishes and whelks; this was called
diffuse predation (Robles & Robb 1993). Notably, at
wave-protected sites, the lobster and fish removals
produced significant community changes only in
combination with whelk removals (Robles & Robb
1993).

American lobsters were also long believed to be a
keystone predator of NW Atlantic subtidal kelp
forests (Elner & Vadas 1990). Specifically, it was
hypothesized that lobsters controlled sea urchin pop-

ulations through predation, and in turn prevented
the destructive grazing of kelp forests by urchins,
which commonly results in so-called ‘urchin barrens’
devoid of frondose macroalgae (Fig. 1G-I). However,
Elner & Campbell (1987) observed that lobster in
both macroalgal and barren habitats did not prefer-
entially prey on sea urchins. Their rank in the diet of
lobster was variable and always surpassed by mus-
sels. These observations did not support the hypoth-
esis that lobster predation regulates sea urchins and
indirectly maintains macroalgal habitats (Elner &
Campbell 1987). A subsequent extensive review on
the topic found that there was a general lack of
experimental testing and that contradictory evidence
(e.g. lobster preferring crab to sea urchins) was dis-
counted without explanation in the available litera-
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ture. Since then the attention has shifted from lob-
sters to large crabs, which may be able to control sea
urchin densities at the juvenile stage, which would
make them an effective top predator in the Gulf of
Maine (GOM) ecosystem (reviewed by Steneck et al.
2004).

The diet of most large decapods appears to be
mostly, but not exclusively carnivorous, with heavy
emphasis on crustaceans or molluscs. Panulirus inter-
ruptus from the intertidal zone of Santa Catalina
Island, California was found to have Mpytilus spp.
(88 % of the total sample of lobsters contained this
prey item), other bivalves (96 %) and limpets (15 %)
in their stomach contents (Robles 1987). Red king
crab from inshore and offshore habitats around Ko-
diak Island, Alaska, mostly fed on molluscs (bivalves,
31.3 % wet wt), crustaceans (mainly barnacles, 31.4 %)
and fish (12.7%) (Jewett & Feder 1982). For snow
crab in Newfoundland, the most frequently occurring
prey items were polychaetes (81-90 %) and bivalves
(43-48%). With respect to prey biomass, however,
shrimp (22-65 %) and fish (capelin Mallotus villosus,
Atlantic spiny lumpsucker Eumicrotremus spinosus,
redfish Sebastes spp.; 5-35 %) were more important.
Crabs, mostly small Chionoecetes opilio, were also
frequently consumed (Squires & Dawe 2003). In
Bonne Bay, Newfoundland, large crabs were more
likely to scavenge on dead fish (e.g. discarded bait)
and smaller crabs more likely to ingest shrimp (Wiec-
zorek & Hooper 1995). The most important prey item
in the diet of Dungeness crab in Gray's Harbor,
Washington, was the shrimp Crangon spp.; however,
first year (small) Metacarcinus magister preferred
small bivalves or small crustaceans, including con-
specifics (Stevens et al. 1982). Of note in this study
was the importance of teleost fish to

the diet of second and third year crab. Humans
Stable isotope analysis has been
used to determine the trophic position Top predators

of decapods (e.g. Grabowski et al.
2009). An analysis of western rock
lobsters Panulirus cygus from the
west coast of Australia revealed that
they were highly omnivorous, with
diets consisting of amphipods, iso-
pods, crabs, bait, foliose red algae
and sponges (Waddington et al. 2008).
The proportional contributions dif-
fered widely among locations, but
bait (4-79 %), crabs (0-76 %) and am-
phipods or isopods (0-54 %) were
important in most cases while algae
and sponges were less important. On

Large decapods

Benthic invertebrates |

Benthic vegetation I Kelp | I

average lobsters occupied the trophic position of a
first-order predator. Lobsters in the deep coastal
zone (35 to 60 m) were primarily carnivorous and
this did not vary with sex, size or location (Wadding-
ton et al. 2008).

We conclude that the decapod species reviewed
here actively prey on a range of organisms in a vari-
ety of benthic habitats, ranging from the intertidal
zone (i.e. Robles & Robb 1993) to deep waters (i.e.
Smith et al. 2012). Their preferred prey items appear
to be other decapods and molluscs, namely mussels.
The wider impacts of their foraging can be substan-
tial (for example keystone predation by spiny lobster
and blue crab; Figs. 1 & 2). Experiments where deca-
pod predators were excluded consistently reported
an increase in benthic infaunal or epifaunal density,
changes in species composition, and sometimes cas-
cading effects affecting various epifauna and vegeta-
tion. Collectively, the available evidence suggests
that large decapods can play important roles in struc-
turing benthic communities; however it is not clear
how general these roles are and to which extent they
can be assumed across species (e.g. American lob-
ster; Elner & Vadas 1990).

Non-consumptive interactions

Decapods are not only involved in predator-prey
interactions, but also compete with other species for
food and habitat, as well as providing and altering
habitat themselves. These non-consumptive interac-
tions have received somewhat less attention than
predatory ones, but may nevertheless represent an
important aspect of decapod ecology.

Marine mammals Predatory fish

v v v

Spiny lobsters :_ Clawed lobsters

Sea urchins | |Musse|s | |Po|ychaetes | Snails
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Fig. 2. Conceptual synthesis. Major documented ecosystem interactions of
large decapods include predatory (solid arrows) and competitive (dotted ar-
rows) interactions. Cannibalistic interactions occur in crabs and lobster, but are
not shown here. Grey: species that are strongly implicated in trophic cascades.
Note this represents a simplified scheme; other interactions may well occur
depending on species diets and other ecological traits in particular regions
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Interference competition. Negative, direct interac-
tions between organisms trying to access the same
resource are called interference competition. In
decapods, agonistic displays, visual displays or com-
bat may play a role during disputes over limited
resources such as food or shelter (Rossong et al.
2006), depending on the species in question, and its
life stage. For example, American lobsters use ago-
nistic displays first, while green crabs tend to go
immediately to combat (Sneddon et al. 1997a,b).
Green crabs are able to outcompete and ingest juve-
nile lobsters (Rossong et al. 2006), and compete with
sub-adult lobsters for resources (Williams et al. 2006);
however, they are often preferred food for adult lob-
ster (Jones & Shulman 2008).

Competition for habitat. To avoid predation, many
decapods are nocturnal and seek protective shelter
during the day. The American lobster is sympatric
with 2 species of Cancer crab, which compete for
suitable shelter, but are often displaced by lobster
when shelter is limited (Richards & Cobb 1986).
Crabs, however, were more flexible in their require-
ments for shelter than lobster and had an ability to
rapidly burrow and use a wider variety of crevice
configurations in the field. Shelter appeared to be
more important to lobster survival than to crab,
implying that habitat limitation could be detrimental
to lobster by exposing them to increased predation
mortality (Richards & Cobb 1986, Wells et al. 2010).
However, shelter does become relatively less impor-
tant to lobster as their size increases, and relative
predation risk decreases (Wahle 1992). Recently,
American lobster have been observed more fre-
quently in predation-prone habitats such as soft-bot-
toms where effective shelter is rare (Tremblay &
Smith 2001, Geraldi et al. 2009), this might signal a
habitat expansion due to lower abundances of preda-
tory groundfish (Boudreau & Worm 2010). Also, lob-
sters have a limited capacity for creating shelter in
soft sediments by burrowing bowl-like depressions
(Tremblay & Smith 2001).

Habitat provision. Most decapods do not only use
habitat, but can provide habitat for other inverte-
brates, for example barnacles Balanus spp., poly-
chaetes, bivalves, crustaceans and gastropods that
may settle on them (e.g. Bernier et al. 2009, Dvoret-
sky & Dvoretsky 2009). For example, red king and
snow crabs carry sea leach adults Johanssonia arc-
tica and their egg cases in the North Pacific and Bar-
ents Sea (Dvoretsky & Dvoretsky 2008), and barna-
cles Octolasmis mulleri have been found growing on
the gills of blue crab in North Carolina (Walker
1974). The high mobility of many mega-decapods is

beneficial to suspension feeders, and also to mobile
epifauna, as they gain protection in addition to
access to scraps from feeding. This shelter is often
only temporary as decapods moult their exoskeleton,
hence most suitable for fast-growing, short-lived epi-
faunal species. However, as the animal ages, moult-
ing frequency slows, often reaching a terminal moult,
for example in snow crab (e.g. Sainte-Marie et al.
1995, Choi & Zisserson 2008) and female blue crab
(e.g. Haefner & Shuster 1964). These species can
gradually become debilitated under an increasing
load of epizoites (Walker 1974). Brooding female
decapods may also provide food in terms of eggs to
nemerteans (e.g. Wickham 1986, Wickham & Kuris
1988) and amphipods (e.g. Dvoretsky & Dvoretsky
2010) living on them. Decapods with epibionts can
also act as vectors for the spread of invasive species.
For example, rock crab and American lobster were
discovered to carry invasive tunicates (Botrylloides
sp., Botryllus sp.) (Bernier et al. 2009).

ANTHROPOGENIC FACTORS

Fishing, marine protected areas, and species intro-
ductions may be changing the way large crustaceans
are distributed and play out their ecosystem roles.
We will examine each of these potential factors in
detail.

Commercial fishing

Decapods have become increasingly important to
commercial fisheries, often as a result of declining
groundfisheries (e.g. Pauly et al. 1998, Worm & Myers
2003, Anderson et al. 2008, 2011, Choi & Zisserson
2008). Many invertebrate fisheries operate under
scarce ecological and life-history information (e.g.
natural mortality rates, nursery habitats) and without
having proper stock assessments conducted (Ander-
son et al. 2008). Fisheries by their nature remove a
certain proportion of the population and in absence of
appropriate biological reference points there is a risk
of overexploitation (Jennings & Kaiser 1998, Worm et
al. 2009). This is particularly true for some highly val-
ued invertebrate fisheries, where particular popula-
tions have declined abruptly and shown slow recov-
ery (e.g. Alaskan red king crab; Orensanz et al. 1998).
However, there are well-known exceptions to this
pattern, for example the American lobster fishery in
the NW Atlantic has exhibited an increase in abun-
dance and landings that began around 1980 and po-
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tentially replaced large fish as the dominant predator
in the ecosystem, which may have in turn influenced
various prey species (Pezzack 1992, ASMFC 2006,
DFO 2006, Steneck 2006, Boudreau & Worm 2010,
Steneck et al. 2011). Yet, this lobster population is not
without potential threats, as the nominal fishing effort
has been increasing (Gendron & Archambault 1997,
Gendron et al. 2000, Pezzack et al. 2001, DFO 2006),
and there has been a trend of fishing larger lobster in
deeper water. Whether these individuals are essential
broodstock and how their removal will affect recruit-
ment, and hence the future of the population, has yet
to be determined (DFO 2006, Boudreau & Worm
2010).

In addition to these population-level impacts, fish-
ing operations may also affect species interactions
(Estes et al. 2011, Steneck et al. 2011) by removing
predators of decapods (e.g. Atlantic cod) or prey (e.g.
rock crab) species, and by altering habitat (e.g. scal-
lop dredges, Kaiser et al. 2006). These interactions
can have important implications for multispecies
management. For example, rock crab is important to
the diet of American lobster (e.g. Sainte-Marie &
Chabot 2002). Given that lobster has a far higher
commercial value, the fishery for rock crab should be
managed conservatively in order to leave sufficient
high-quality prey for lobsters (e.g. Gendron et al.
2001). It is not clear, however, how these findings
relate to other species; while studies on American
lobster or snow crab often mention their interactions
with sympatric species of crab, such associations
were largely absent from studies on other species
reviewed here.

Another potentially important interaction between
decapods and fishers are mediated by bait inputs.
There is some evidence that bait losses as well as dis-
cards have the potential to subsidize decapod popu-
lations, for example, in the GOM American lobster
fishery (Saila et al. 2002, Grabowski et al. 2009) and
the Western Australia rock lobster fishery (Wadding-
ton & Meeuwig 2009). In Western Australia, stable
isotope analysis and gut contents analysis indicated
that bait inputs contributed between 30 and 80 % of
the diet of rock lobster Panulirus cygnus. However,
the amount of bait available depends on the length of
the fishing season (Waddington et al. 2008). In the
Western GOM, year-round fishing and its bait inputs,
may have significant effects on lobster (Saila et al.
2002, Grabowski et al. 2009), whereas this is proba-
bly not the case in the Eastern GOM, where the fish-
ing season is limited to winter and bait inputs are
considerably lower (Grabowski et al. 2009, Boudreau
& Worm 2010).

The long-term effects of decapods being fed large
amounts of bait are unclear. There is some evidence
that American lobsters in New Brunswick, where
bait is available only in winter, outgrew those in
Maine where bait is available year round (Grabowski
et al. 2009). It is also possible that a diet that largely
relies on herring bait affects the physiological condi-
tion of those animals (Myers & Tlusty 2009). Finally,
whether an increase of bait in lobster diets has
resulted in a reduction of predation rates by lobsters
on their regular prey species, has yet to be tested.

In conclusion, fisheries may have a range of effects
on the ecosystem. Removal of groundfish or other
decapod predators can lead to population increases
and shifts in trophic structure. Additionally, fishing
may decrease the abundance of key prey items (e.g.
rock crab for American lobster) or supplement deca-
pod diets through bait.

Conservation and protected areas

The potentially large effects of fishing on decapods
often become most apparent when this influence is
removed, in what Castilla (1999) has termed a
'human exclusion experiment’. Marine reserves
where fishing is excluded can be valuable in this
regard, in testing ecosystem level effects of fished
species at ecologically relevant scales (Shears & Bab-
cock 2002). Reserves have been shown to success-
fully protect and increase spiny lobster populations
(e.g. Kelly et al. 2000), which had strong cascading
effects throughout the ecosystem (Fig. 1G-I). In
northeastern New Zealand, Taharanui Marine Park
(established 1981, implemented 1983) and Leigh
Marine Reserve (established in 1975) are no-take
reserves, whereas Mimiwhangata Marine Park
(established 1984, commercial fishing phased out by
1993) allows recreational fishing. Several studies
documented the development of benthic communi-
ties inside and outside these reserve sites. In the
Leigh Marine Reserve and Taharanui Marine Park,
trends post-reserve revealed that the most common
demersal predatory fish, the Cockney snapper
Pagrus auratus, was 5.8 and 8.7 times more abundant
and considerably larger inside these 2 reserves when
compared with adjacent unprotected areas. The
spiny lobster Jasus edwardsii showed similar trends
(1.6 to 3.7 times more abundant, as well as increased
mean size). In one of the reserves, densities of the
dominant sea urchin Evechinus chloroticus (not of
significant commercial value) had declined from 4.9
to 1.4 m™2 since 1978. Consequently, kelp forests
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were less heavily grazed and more extensive in cover
in 1998 than they were at the time of reserve cre-
ation. Macroalgal primary productivity was esti-
mated to be ~58 % greater within the Leigh reserve
in 1998 than it was in 1980. Urchin-dominated bar-
rens occupied only 14 % of available reef substratum
in reserves as opposed to 40 % in unprotected areas
(Fig. 1G-I). These changes in community structure,
which have persisted since at least 1994, suggest a
trophic cascade from lobsters and fish to urchins and
kelp that led to increased primary and secondary
productivity in marine reserves as a consequence of
protection (Babcock et al. 1999).

Interactions between lobsters and sea urchins con-
tinue to be of importance. In the no-take marine
parks and at sites outside the reserves mentioned
above, field experiments during 1998-99 revealed
that lobsters preyed on a range of sea urchins. Teth-
ering experiments suggested that lobster were re-
sponsible for at least 45 % of predation on urchins in
the reserve sites; the rest was attributed to snapper
and potentially to several slow-moving predators
such as the sea star Coscinasterias muricata, or the
gastropod Charonia lampax. Predation on urchins
was significantly (6.9 times) higher inside the reserve
than outside. Consequently, the density of adult sea
urchins grazing on barrens within reserve sites was
significantly lower than outside. Experimental re-
moval of sea urchins >12 mo led to a change from
crustose coralline algae to macroalgal canopies that
mimic habitats now commonly found in the reserves
(Shears & Babcock 2002). Such changes in habitat
are believed to affect a host of other species. For
example, in the Leigh Marine Reserve, lower density
of the limpet Cellana stellifera and higher densities
of the turbinid gastropod Cookia sulcata are thought
to be responses to changes in the habitat structure
indirectly resulting from the increased density of
urchin predators (Shears & Babcock 2003).

Not just commercial exploitation, but limited recre-
ational fishing may also affect these interaction
chains. In Taharanui and Mimiwhangata Marine
Park lobster densities were similar prior to the cre-
ation of the parks. After full protection in Taharanui,
the abundance of legal-sized lobster increased 11-
fold and biomass increased 25-fold. Mimiwhangata
Park, in contrast, allowed recreational fishing and
showed no significant change in the abundance or
biomass of legal size lobsters, nor any spatial differ-
ence to fully fished areas adjacent to the park. Like-
wise, other urchin predators have not recovered fol-
lowing partial protection in Mimiwhangata (Shears
et al. 2006). Consequently, kelp forest habitats that

dominated on shallow reefs up until the 1950s have
been replaced by urchin barrens that have persisted
at least since the 1970s (Kerr & Grace 2005).

In a similar example from Southern California,
large spiny lobsters Panulirus interruptus prey on the
purple Strongylocentrotus purpuratus (Tegner &
Levin 1983) and red sea urchins S. franciscanus (Teg-
ner & Dayton 1981). By contrast, in cold water sites
such as Torch Bay, Alaska, where lobsters are absent,
the predatory seastar Pycnopodia helianthoides is an
important urchin predator (Duggins 1983). In south-
ern California, a large fish, the sheepshead Semi-
cossyphus pulcher, can also reduce urchin densities
(Cowen 1983) and in combination with P. interruptus,
structure the sea urchins' size frequency distribu-
tions (Tegner & Dayton 1981). Sampling in and
around the Anacapa marine reserve in Channel
Islands National Park, California, revealed that where
the main predators on urchins were fished, urchin
populations increased to such an extent that they
overgrazed algae and starvation eventually limited
urchin population growth (Lafferty 2004). Individual
growth rates were also reduced and epidemics were
4 times more frequent outside the reserve than in-
side. However, the availability of food and tempera-
ture did not appear to influence disease. It was
inferred that overfishing the spiny lobster, and there-
fore releasing urchins from predation, could in turn
promote disease transmission as urchin density in-
creased (Lafferty 2004).

In the Atlantic Ocean, one short-term study of
American lobsters in a reserve exists from Bonavista
Bay, Newfoundland (Rowe 2002). Increases in body
size and density were documented after 3 yr of pro-
tection. There was evidence to suggest that the cre-
ation of these no-take reserves would benefit fish-
eries by increasing lobster survival (Rowe 2001,
2002); however, no wider ecosystem effects were
examined. In the northeast Atlantic, European lob-
ster abundance and size rapidly increased after the
establishment of the UK's first no-take zone (NTZ) in
2003. Evidence also indicated a ‘spillover’ into areas
adjacent to the NTZ where an increase of sub-legal
lobsters was observed (Hoskin et al. 2011). In con-
trast, European lobster tagged in a Skagerrak coast
reserve (Norway) were observed to remain in the
reserve or near the boundary (Moland et al. 2011).

We conclude that it is possible to observe strong
species interactions and trophic cascades due to the
recovery of spiny lobsters, as well as other predators
in some marine reserves. Urchins seem to be particu-
larly important in mediating these ecosystem-wide
effects. Again, it is unclear whether and how these
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results transfer to other species, such as large crabs
and clawed lobsters. Marine reserves, especially
when replicated at different sites and during differ-
ent time periods, create an excellent opportunity to
study the potential direct and indirect effects of fish-
ing on benthic communities.

Decapod introductions and invasions

Introductions and invasions lead to the establish-
ment of a species in a habitat where it was not
formerly found. As such, these events provide
quasi-experimental context in which to examine
the ecosystem role of particular species. Marine
invasive species have been described as important
drivers of ecological change. They are often viewed
as being irreversible and their impacts can lead to
changes in habitat and displacement of native spe-
cies via predatory or competitive interactions (Bax
et al. 2003). However, it is often quite difficult to
quantify these ecosystem consequences in the mar-
ine environment.

Once a non-indigenous organism has been intro-
duced into a region, indigenous species may indi-
rectly facilitate its spread. For example, by feeding
on mussels, Jonah crabs Cancer borealis had a posi-
tive indirect effect on the abundance of an intro-
duced ascidian Diplosoma sp., by facilitating bare
substrate for settlement and successful colonization
of the invader (Siddon & Witman 2004). American
lobster, when present, reduced the foraging effec-
tiveness of the crabs on mussels. The authors were
concerned that the harvesting of lobsters may lead to
increased crab predation on mussels and in turn, an
increase in Diplosoma sp. cover in the GOM (Siddon
&Witman 2004).

One important case study concerns red king crab,
which was introduced to the Barents Sea by the for-
mer Soviet Union from 1961 to 1969 to establish a
commercial fishery. In 1974, a first berried female
was found; by 1976, there were at least 100 records,
and the introduction was considered a success (Orlov
& Ivanov 1978). This population is now believed to be
actively invading coastal waters through migration of
mature crabs and passive dispersal of larvae (Peder-
sen et al. 2006). Red king crabs are currently abun-
dant along the Finmark coast of Northern Norway
with an estimated population of 3.5 million crabs
>70 mm CL in 2003 (Hjelset et al. 2003).

Like most mega-decapods, adult red king crabs are
opportunistic omnivores (Cunningham 1969). There
is great concern that these crabs will decimate the

native Iceland scallop Chlamys islandica, a slow-
growing, commercially important species with a
depth distribution that overlaps with the invasive
king crab population. Laboratory studies suggested
that even small king crabs would have an impact on
the scallop community by removing sea urchins, sea
stars, and scallops (Jergensen 2005). Scallops made
up 73 to 97 % of the prey weight (g) foraged by the
crabs. The benthic community impacts associated
with the migratory medium-sized to large crabs may
extend to other species as well; for example, horse
mussels and common whelks were crushed and con-
sumed by these individuals. This invasion is pro-
gressing rapidly: in 2001, a non-invaded control bed
was selected for long term monitoring in Porsanger
fjord, Norway. Invasion was expected within 5 to 8 yr
(Jergensen 2005); however, the first red king crab
was already recorded 4 yr later (Jorgensen & Prim-
icero 2007).

In addition to intentional introductions, the Arctic
and Antarctic are now being exposed to species inva-
sions from lower latitudes due to climate change. For
example, king crabs (Lithodes spp., Paralomis spp.,
Neolithodes spp.) have recently been recorded in the
Antarctic Ocean for the first time since an extinction
event in the Miocene (~15 million yr BP) that is
thought to have occurred due to Antarctic cooling.
Migration from the deep sea is the most likely mech-
anism for recolonization (Thatje et al. 2005). These
species also have larvae that are well-adapted to low
temperatures and low levels of plankton productivity
(Anger et al. 2003). As king crabs re-establish, they
may impact the rich fauna of large amphipods and
isopods found in this region and could further affect
benthic communities by consuming echinoderms
and crustaceans (Thatje et al. 2005) and altering sed-
iments through locomotive and feeding activities
(Smith et al. 2012).

There could also be other unintended impacts from
introduced species on indigenous decapods. For
example, in the north Pacific (Washington, USA), the
introduced Atlantic smooth cordgrass Spartina
alterniflora has transformed previously unstructured
habitats to highly structured marsh meadows. This
ecosystem transition has altered the movement and
foraging behaviour of the Dungeness crab and
increased its risk of being trapped in marsh grass and
exposed at low tide (Holsman et al. 2010).

We conclude that mega-decapods, once intro-
duced to a new region, can become successfully
established and have the potential to dramatically
alter the benthic community through predation.
They are vulnerable to the establishment of non-
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indigenous vegetation, which can restructure their
habitat. Additionally, indigenous mega-decapods
may facilitate the dispersal of non-indigenous ses-
sile organisms by providing habitat and also indi-
rectly by preying upon bivalves resulting in bare
substrate upon which other invasives may settle. As
climate change continues to increase average ocean
temperature, invasions may increase in frequency
as species expand their distributions.

DISCUSSION

This review indicates that large decapods play an
important role in benthic communities, ranging from
intertidal to deep waters (Table 1). These effects are
mediated by the following mechanisms (Fig. 2): (1)
Decapods are prey for a large range of vertebrate
(humans, marine mammals and fish) and inverte-
brate (mostly other decapods) predators; however,
they did not appear to be a key dietary component
for non-decapod species. (2) They are successful and
versatile predators, preying at more than one trophic
level, mostly on benthic invertebrates, but occasion-
ally consuming algae or detritus. Some species, espe-
cially spiny lobsters and blue crabs, have demon-
strated large effects on benthic community structure,
either as keystone species or by inducing trophic cas-
cades. (3) Decapods interact with the habitat and its
inhabitants in a variety of ways, including providing
habitat for smaller invertebrates, and competing for
food and shelter.

For the species and ecosystems reviewed here, one
of the most striking interactions was that of regulat-
ing trophic cascades (Fig. 1, grey boxes in Fig. 2).
These trophic cascades took place in a variety of tem-
perate habitats, from the rocky intertidal (Robles &
Robb 1993) to saltmarshes (Silliman & Bertness 2002)
and subtidal reefs (Babcock et al. 1999). In these
cases, large decapods were essential in the mainte-
nance of benthic vegetation (kelp forests, marsh
grass, or turf algae), and therefore habitat complexity
and productivity by regulating the grazing commu-
nity (e.g. gastropods, sea urchins). Often predatory
decapods were joined in this function by fish (Robles
& Robb 1993, Babcock et al. 1999) or whelks (e.g.
Robles & Robb 1993). Predatory interactions between
spiny lobsters and crabs on sea urchins were demon-
strated to be important; however, no such relation-
ship has become evident for American (or European)
lobsters. Instead, American lobster appear to prefer
crabs in their diet, and it is possible that these
observed differences could be due to their claws

allowing them to be more effective at capturing and
consuming mobile and well-defended prey. Exclu-
sion experiments (e.g. Quijén & Snelgrove 2005a,b)
often supported the hypothesis of strong ecosystem
effects of decapods on benthic fauna (molluscs, poly-
chaetes), even if no trophic cascade was observed.

Decapods themselves may be commonly regulated
in their abundance by predators (Fig. 2). Exclusion of
fish predators allowed decapod populations to in-
crease, for example in the case of Nassau grouper
preying on juvenile Panulirus argus (Eggleston et al.
1997). A similar release from (mostly gadoid) fish
predation has contributed to observed increases in
the abundance of American lobster and snow crab in
the NW Atlantic (e.g. Worm & Myers 2003, Steneck
et al. 2004, Frank et al. 2005, Zhang & Chen 2007,
Boudreau & Worm 2010, Boudreau et al. 2011). This
body of evidence adds to a growing concern that
commercial fisheries have the potential to affect eco-
system function through the removal of certain pred-
ators (Fig. 2), influencing species interactions, and in
some cases leading to cascading changes throughout
the ecosystem (e.g. Dill et al. 2003, Baum & Worm
2009, Estes et al. 2011).

It has become evident from the research reviewed
here that decapods have evolved to become efficient
predators of other shelled organisms (mostly bi-
valves, gastropods, echinoderms, and crustaceans)
due largely to their uniquely strong claws (Taylor
2000). They prey on these items across a broad range
of habitats and are capable of controlling strong
space competitors, such as mussels, to maintain algal
growth or mobile herbivores (sea urchins, snails)
grazing on algae (kelp, sea grass, turf algae), with
strong indirect effects on habitat structure and
(likely) primary productivity (Figs. 1 & 2). Further-
more, if teleost predators of decapods become over-
harvested, those decapods typically increase in
abundance, and hence in their importance in the eco-
system, where they can become the dominant preda-
tor in some cases (Steneck et al. 2011).

While the focus of this review has been largely on
predatory (top-down) species interactions, it is
important to note that other mechanisms are also
present in the ecosystem. Environmental variables,
such as temperature and hydrodynamics (e.g. Hig-
gins et al. 1997), and density-dependent mechanisms
(e.g. Wahle 2003) are common bottom-up factors that
explain changes in mega-decapod abundance. For
example, Dungeness crab Metacarcinus magister
exhibit cycles of recruitment linked to spring oceano-
graphic conditions that influence currents and larval
transport, directly affecting early life stages (Shanks
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& Roegner 2007). Crab such as Chionoecetes opilio
(Conan et al. 1996, Caddy et al. 2005) and Callinectes
sapidus (Hines & Ruiz 1995) display strong density-
dependent population regulation (i.e. via cannibal-
ism), which may partly explain observed population
cycles. Thus, while the top-down mechanisms dis-
played in Figs. 1 & 2 are undoubtedly important,
other factors will come into play when considering
decapods in a full ecosystem context.

Although the available evidence does suggest that
large marine decapods play a role in structuring ben-
thic communities, this literature review also exposed
some clear knowledge gaps. For example, compre-
hensive long-term studies of benthic communities
documenting changes in mobile and sedentary in-
and epi-fauna are scarce. It appears that most studies
examine one particular interaction (e.g. decapods as
predators) and rarely consider the species in a full
ecosystem context. Recently fisheries scientists and
managers have been considering ecosystem-based
approaches that take into account trophic inter-
actions and human as well as natural sources of mor-
tality (e.g. Garcia et al. 2003). Towards this goal, sci-
entists have been using sophisticated modeling
techniques, such as multispecies virtual population
analyses and mass-balance models (e.g. Walters et
al. 1997, Hanson & Chouinard 2002, Zhang & Chen
2007). These models are parameterized using avail-
able dietary studies (such as those described in this
paper) and population time series summarized for a
given ecosystem (Walters et al. 1997, Hanson &
Chouinard 2002). These methods can be useful, for
example, to examine the possible consequences of
complex ecosystem shifts (e.g. for the GOM; Zhang &
Chen 2007), but cannot replace long-term empirical
and experimental studies.

Long-term studies could be of great value for creat-
ing a baseline as fishing, climate change and other
impacts continue to alter ocean ecosystems. A
diverse range of other benthic community members
such as fish, sea stars or even amphipods and isopods
interact with mega-decapods. Thus, detailed time
series of these species could be beneficial in under-
standing and predicting broader ecosystem change.
Time series, however, cannot uncover mechanisms;
hence detailed mechanistic studies are equally
essential. For example, several predator exclusion
experiments reviewed here provided valuable in-
sights into the mechanisms by which large decapods
affect community structure across a range of benthic
habitats. Results from such experiments may also be
used to parameterize ecosystem-based models. How-
ever, interactions with benthic fishes were not cov-

ered in much detail in the literature and we suggest
that this could be further examined.

Many of the factors and interactions examined in
this paper are linked: consider for example the com-
plex mechanisms of interference-competition (Ross-
ong et al. 2006, Williams et al. 2006) and predation at
different life stages between an indigenous commer-
cially harvested decapod (American lobster) and
non-indigenous competitors (green crab) and prey
(Jones & Shulman 2008). Such complexities highlight
the fact that an ecosystem-based approach to under-
standing and managing these valuable resources
would be informative.

As more decapod populations are of increasing
socio-economic importance and continue to be har-
vested more widely (Anderson et al. 2011), it is im-
portant that we expand our knowledge of ecological
interactions that affect the abundance of these spe-
cies, their prey, and habitat. It is our hope that this
knowledge may ultimately help managers maintain
critical trophic interactions and prevent overexploita-
tion in an ecosystem context.
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