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The global biodiversity crisis has motivated new theory

and experiments that explore relationships between

biodiversity (species richness and composition in par-

ticular), productivity and stability. Here we emphasize

that these relationships are often bi-directional, such

that changes in biodiversity can be both a cause and a

consequence of changes in productivity and stability.

We hypothesize that this bi-directionality creates feed-

back loops, as well as indirect effects, that influence the

complex responses of communities to biodiversity

losses. Important, but often neglected, mediators of

this complexity are trophic interactions. Recent work

shows that consumers can modify, dampen or even

reverse the directionality of biodiversity-productivity-

stability linkages inferred from the plant level alone.

Such consumer mediation is likely to be common in

many ecosystems. We suggest that merging biodiver-

sity research and food-web theory is an exciting and

pressing frontier for ecology, with implications for bio-

diversity conservation.

Complex systems such as ecosystems, societies or markets
can be simplified conceptually into three basic aspects:
quality, quantity and temporal stability. Accordingly,
ecologists have concentrated on three fundamental aspects
of ecosystems: (1) species composition and richness, which
describe qualitative variation of life; (2) biomass and
productivity, which refer to the quantity and rate of
production of living matter; and (3) stability, which can
refer to the temporal constancy of a community, resistance
to environmental change, or resilience after a disturbance.
Although theory indicates that species composition and
richness, productivity and stability can influence one
another [1–3], these properties have been studied often in
isolation or in pairwise fashion. Here we integrate theory
and empirical results to suggest that linkages among
biodiversity, productivity and stability are likely to be
bi-directional. Thus, these properties will be studied most
meaningfully together to characterize the feedback loops
and indirect effects that might join them. We emphasize
that trophic interactions influence strongly the magnitude
and direction of these linkages. Integration of biodiversity-
ecosystem functioning with food-web research poses an
exciting challenge for ecology, and might be of growing

importance for the conservation and management of
globally changing ecosystems.

Biodiversity and productivity: give and take

Biodiversity has two main components at the species level:
‘richness’, or number of species; and ‘composition’, or
identity of those species. Among the most stimulating
themes developing in ecology over the past decade is the
idea that the number of species, irrespective of their
identities, can significantly influence ecosystem function-
ing (i.e. the cycling of energy, nutrients and organic matter
that keeps ecosystems working). The societal implication
of this concept is that species losses could generally harm
ecosystems, and ultimately the human enterprise. Yet,
since the earliest experiments testing such biodiversity-
functioning linkages, debate has focused on whether the
effects of biodiversity on ecosystem functioning reflect
primarily the influence of species richness or of compo-
sition [4–6]. Studies that attempted to separate the effects
of composition and richness in terrestrial, freshwater and
marine habitats usually found that both were important
[7–13]. Some studies, however, could detect only compo-
sitional effects on productivity, but no richness effect
[14–15]. Compositional effects trace back typically to a few
functionally dominant species. Richness effects that are
independent of species composition probably result from
increased facilitation and niche complementarity at high
species richness [11–12,16].

These results provide a change in perspective from the
historical belief that species richness and composition are
consequences, rather than a cause, of changes in pro-
ductivity. For example, much previous experimental,
descriptive and theoretical work showed that local richness
was often related unimodally to productivity [2,17–19],
whereas regional richness was often a linear function of
productivity [19]. Because productivity in such studies
reflected experimental or environmental gradients in
resource supply, the emphasis was on the productivity
potential of the environment controlling species richness.
Indeed the direction of causality between richness and
productivity has been a major source of contention [4,12].
This is due in part to the apparent conflict between the
positive richness-productivity relationship in many exper-
imental assemblages, and the declining richness often
observed in transitions from mesotrophic to eutrophic
systems [2,20–21]. This seeming contradiction appears in
part because experiments simulate how changing speciesCorresponding author: Boris Worm (bworm@ifm.uni-kiel.de).
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pool size affects local productivity, whereas cross-site
comparisons address how the productivity potential of
the environment adjusts local richness given a particular
species pool [12]. These points underscore that causality
between biodiversity and productivity goes both ways:
increasing potential diversity (species pool size) can
enhance production, whereas increasing potential pro-
ductivity (resource flux) adjusts local diversity (Figure 1).
Reconciliation of the seemingly conflicting patterns requires
(1) accounting for processes acting in both directions, and
(2) distinguishing biological productivity per se, which is
a function of the organisms, from productivity potential,
which is a function of the organism-environment
interaction.

Direct and indirect effects on stability

The linkage between biodiversity and stability depends on
the scale of inquiry: compared with species-poor commu-
nities, species-rich communities often show greater
fluctuations within individual populations [1], but
increased stability at the community level [22–23].
Community stability is defined here as the inverse of the
temporal variability of an assemblage, such as measured
by the coefficient of variation in aggregate biomass.
Experimental evidence for a positive effect of species
richness on community stability comes from kelp beds [24],
aquatic microbial microcosms [25–26], grasslands [22],
mycorhizal fungi [27], and marine invertebrate commu-
nities [28]. The general result was that species-rich
communities showed reduced variation in aggregate
biomass (higher community stability) under a range of
environmental conditions, including stress and disturb-
ance. However, methodology can influence results
strongly, and multiple interpretations still exist for the
available data (reviewed in [23]).

Again, some of these studies have been controversial
because species composition often co-varies with richness,
making these effects difficult to separate. Two studies have

separated clearly compositional and richness effects on
productivity and stability. One microcosm study of a
simple plant-based food web documented strong effects
of composition, but weak effects of diversity on community
stability [29]. Plant biomass and productivity were
affected strongly by both composition and diversity.
Although more diverse communities tended to be more
productive, stability sometimes declined with increased
diversity. These results were corroborated by a grassland
study, which showed that increased production in high-
diversity assemblages might render them more vulnerable
to drought, thereby reducing their resistance and resi-
lience [30]. Although these two studies do not support the
above-cited results that more diverse communities are
more stable, they show how changes in diversity, pro-
ductivity and stability are interdependent. They also
suggest an indirect negative effect of a positive diversity-
productivity linkage on stability. Such indirect effects
couldbecommon,butmightbedetectableonlywhendiversity,
productivity and stability are studied in combination.

Community stability, as defined above, is considered
most meaningfully with reference to disturbances or other
external events that induce destabilizing fluctuations in
community biomass (Figure 1). Disturbance has well-
documented effects on local diversity. A high-disturbance
environment is extremely unstable and can be tolerated
usually only by few specially adapted species. Low-
disturbance environments are highly stable, but often
support low species richness because competitive exclu-
sion has time to run its course [31]. Accordingly, empirical
studies in a range of ecosystems showed that highest
richness often occurs at intermediate disturbance inten-
sity or frequency, and, by inference, at intermediate
community stability [2,31–33]. This illustrates again the
bi-directionality of linkages between diversity and ecosys-
tem properties. Biodiversity can influence community
stability, but stability (driven by disturbance regime) can
also influence diversity. As for the biodiversity-productivity
linkage, the mechanisms differ in the two directions. First,
diversity can increase community stability because a larger
species pool provides a greater range of adaptive traits,
which can keep performance stable under varying con-
ditions. By contrast, the stability of the environment adjusts
local richness within a given species pool. An intriguing
question is whether a diverse community might stabilize
the abiotic environment sufficiently (e.g. by ameliorating
fluctuations in water availability or temperature) to
influence disturbance regime and, in turn, diversity.

In conclusion, we suggest that changes in biodiversity
can affect community stability, and changes in community
stability can affect biodiversity (Figure 1). Finally, similar
linkages might also exist between productivity and
community stability. For example, one might suspect
that enhanced community stability favours local pro-
ductivity (Figure 1), but we know of no study that
addresses these linkages explicitly.

Possible consequences

If our synthetic scheme (Figure 1) were realistic, it would
have important consequences for the theory of biodiversity
and for conservation because of potential feedbacks among

Figure 1. Reciprocal relationships among biodiversity (species composition and

richness), productivity (the rate of production of organic matter) and stability

(temporal constancy) within a local community (white area). Dotted arrows indicate

hypothetical relationships. The effects of regional processes such as disturbance

rate, resource supply and propagule supply from the regional species pool are

also shown (purple area).
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structural and functional, as well as biotic and abiotic,
properties of ecosystems. Moreover, impacts could be
mediated through both direct and indirect effects. First,
it is well documented that species loss from established
communities could directly change patterns of pro-
ductivity and stability [34]. Such changes are mediated
by compositional or richness effects, or both [12]. However,
it seems highly unlikely that species losses do produce
static changes in ecosystems. Instead, changes in pro-
ductivity and stability might feed back dynamically on
diversity, with further repercussions for ecosystem
functioning. For example, a loss of structural species
(trees, seagrasses, corals, or the like) could change not only
mean productivity and habitat structure, but also render a
community more susceptible to subsequent disturbances,
leading to further destabilization and possibly the loss of
other species. Indeed, simple models show that declining
diversity increases the risk of further such ‘cascading
extinctions’ [35]. Similarly, loss of functionally dominant
species, such as keystone species [36], ecosystem engineers
[37] or species with many trophic connections [38], would
have particularly strong effects and could induce rapid and
violent changes in local biodiversity.

Likewise, the loss of species can change productivity not
only directly, but also indirectly through changes in the
light, water and nutrient regimes. Such changes will
impact often the productivity of remaining species because
the local abiotic environment has changed. These changes
could then feed back to adjust local diversity via the
productivity-diversity link. Furthermore, these changes
in productivity could affect community stability [30]. In
short, we suggest that feedbacks and indirect effects
among diversity, ecosystem structure and ecosystem
functional processes could be important in real
ecosystems.

Caught in the food web

No discussion of ecological feedbacks would be complete
without considering trophic interactions, which represent
perhaps the most important class of feedback phenomena
in ecosystems. Yet, current understanding of linkages
between biodiversity and ecosystem functioning is based
largely on research in ungrazed grasslands and aquatic
microcosms [39]. The majority of these studies have
focused on ecosystem effects of plant species richness or
composition. We know, however, that consumers influ-
ence structure and function of many ecosystems
profoundly [21,40–42], and that they outnumber
plant species greatly. Moreover, species at higher
trophic levels generally face stronger average extinc-
tion threats than plant species, with important
implications for ecosystem functioning [43]. Even in
simple two-level food chains, addition of grazers can
change the relationships between diversity, pro-
ductivity and stability substantially from those derived
from experiments that focused on plants alone. First,
both theory [2,44] and field experiments [21,45] have
shown that the effects of productivity and disturbance
on diversity and ecosystem processes can reverse in
direction depending on the presence or absence of
herbivores. Second, simple grazer competition models

suggest that plant community biomass generally will
decline with increasing grazer diversity as the most
effective grazer comes to dominate [46]. Species-rich
consumer assemblages can also reduce aggregate
resource abundance through complementary feeding
preferences and facilitation [47,48]. The implication is
that changing plant and grazer diversity might have
opposite impacts on plant biomass, potentially cancel-
ing one another out (Figure 2). Experiments in
microbial microcosms [49] and seagrass mesocosms
[13] support these predictions and show that plant
biomass declines with increasing grazer species rich-
ness. Perhaps most interestingly, positive effects of
plant species richness on productivity were erased
when consumers were introduced in grassland plots
[50] and aquatic microcosms [51]. Invertebrate grazers
also controlled algal biomass accumulation strongly in
a rocky intertidal community, overriding potential effects
of algal biodiversity [42]. Thus, consumers appear to
change, dampen or reverse relationships between plant
diversity and productivity (Figure 2). However, because so
few studies have manipulated consumer diversity, the
generality of these effects is uncertain.

Evaluating relationships between diversity, trophic
processes and productivity might also depend on whether
productivity is measured directly or estimated as plant
biomass accumulation (as in most studies cited above).
Perhaps the most general and ecologically significant
effects of grazers are reduction of plant standing biomass
and enhancement of nutrient regeneration, which
together can reduce plant competition and stimulate
primary productivity [52]. An important implication is
that primary production and standing plant biomass
might often be decoupled in grazed ecosystems [53].
Therefore, addition of consumers can decrease plant
biomass, but actually increase primary production. Fur-
thermore, there is evidence that increased grazer species
richness enhances secondary production [13]. These
complications have important implications for biodiver-
sity-functioning relationships in real food webs and
warrant further study.

Figure 2. Potentially opposing influences of diversity on primary productivity at

adjacent trophic levels as predicted from theory and recent experiments. Pro-

ductivity (here measured as plant biomass accumulation) increases with plant

species richness (plant diversity effect) (a), decreases with herbivore richness (grazer

diversity effect) (b), but expectations are less clear with two (or more) trophic levels

(net diversity effect) (c). Open and filled symbols represent low-and high-diversity

assemblages, respectively. Solid lines indicate the mean, and dotted lines bound

the range of hypothesized responses with changing species richness.
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Emerging complexity

Although simple models and experiments suggest counter-
vailing impacts of plants and grazers on ecosystem
properties, a common theme of nearly all studies to date
is the pervasiveness of complex interactions in food webs.
In multilevel food webs, emergent effects of biodiversity
could arise from complex trophic interactions between
plants, grazers and predators, which often influence
ecosystem properties through indirect effects that cannot
be predicted by simply adding up their individual
impacts [10,13,40,51]. Such complexity can arise from a
host of indirect interactions [40] as well as interference
competition among consumers or intraguild predation. Is
there any hope of extracting generalizations from such
complexity?

Cause for optimism comes from the vigorous research in
food-web ecology, which has developed parallel themes to
diversity research. Again, the core question is whether
the identities of a few dominant species (called strong
interactors or keystone species) or the total number of
species and trophic links (including many weak inter-
actors) determines community structure, function and
stability. Interaction strength is defined as the mean per
capita effect of a predator on its prey [54]. Strong
interactors have disproportionate effects on community
structure; for example, by keeping competitively dominant
prey species in check [36]. However, real food webs appear
to be characterized by many weak and only few strong
interactions [54,55]. Are most species simply passengers in
ecosystems that are run basically by a few dominants?
Models that account for differences in interaction strength
indicate that weak interactors play a crucial role by
dampening oscillations between consumers and resources,
and decreasing the statistical chance of extinction [55]. An
analysis of 104 real food webs confirmed that many weak
interactors enhance community stability and might be
important in maintaining food web complexity and species
diversity [56]. Likewise, recent experiments in marine
food webs revealed, on average, variable and often strong
effects of weak interactors [57,58].

Concluding from these studies, species composition
(with respect to few strong interactors) and species
richness (with respect to many weak interactors) deter-
mine jointly the structure, function and stability of
communities. Therefore, biodiversity loss will transform
and destabilize complex food webs, irrespective of which
species are affected. Such results from food-web ecology
parallel those from experimental diversity research and
highlight the promise of integrating these thriving but
largely separate fields.

Conclusions

We conclude that the effects of biodiversity loss on commu-
nities and ecosystems are complex owing to indirect effects
and feedbacks mediated by changes in community stability,
productivity and food-web interactions. Although many of
these effects are poorly explored and some are entirely
hypothetical, there is much empirical evidence that the loss
of species can bring about complex and dramatic reorgan-
izations of ecosystems, including trophic cascades [41],
cascading extinctions [35] and rapid shifts to undesirable

stable states [59]. Trophic interactions play important
roles in most of these processes. Thus, to better understand
these important issues, it is crucial that biodiversity,
stability and productivity are studied together in the
context of real food webs. We suggest three specific topics
for further research: First, the possible existence of
feedback loops and indirect effects between diversity,
productivity and stability calls for rigorous theoretical
and empirical exploration (Figure 1). Second, we require
systematic experimental and observational studies of how
diversity losses at higher trophic levels influence lower
trophic level diversity, productivity and stability. Of
particular interest is how changes in diversity interact
at different trophic levels (Figure 2). This could be
addressed, for example, via factorial manipulations of
plant, herbivore and predator diversity. Third, to place
experimental studies in a realistic context, we need a
reinvigorated search for ‘community disassembly rules’;
that is, general patterns in the sequence of species and
functional group losses from real food webs. Uncovering
such rules, if they exist, will help make diversity
experiments even more relevant to addressing the ongoing
crisis of eroding global biodiversity.
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