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Matters arising

Global effects of marine protected areas on 
food security are unknown

Daniel Ovando1,6 ✉, Owen Liu2, Renato Molina3, Ana Parma4 & Cody Szuwalski5

arising from: E. Sala et al. Nature https://doi.org/10.1038/s41586-021-03371-z (2021)

Marine protected areas (MPAs) can be a powerful conservation tool and 
can positively or negatively affect food security. Sala et al.1 estimate the 
effects of a global network of MPAs designed for biodiversity, carbon 
sequestration and food security. However, the model used to project 
these benefits depends on a series of unrealistic and insufficiently 
tested assumptions that are inconsistent with its source material; using 
a more realistic model markedly changes the map of priority MPAs 
and reduces potential food benefits by 62%. This extreme sensitivity 
in the outcomes of MPA networks to highly uncertain parameters and 
modelling assumptions means that the true global effects of MPAs on 
food security remain unknown.

We agree with Sala et al.1 that MPAs can have an important role in 
managing and conserving marine ecosystems. But we are concerned 
that the model used by the authors does not present a reliable assess-
ment of the effect of MPAs on the yields of fisheries and, by extension, 
that it is not a reliable foundation for the broader assessment of the 
role of MPAs in achieving multiple objectives of marine conservation, 
food security and climate action1. The results of Sala et al.1 depend on 
the same model as those of a previously published study2 (see also 
ref. 3), which assumes that density dependence is a function of total 
pooled population size, independent of how fish are distributed in 
space, and that unassessed fish stocks (that is, stocks not included in 
the RAM Legacy Stock Assessment Database) of a given species are a 
single global interconnected population. These two assumptions gen-
erate results that are neither consistent with their source material4 nor  
ecologically reasonable. The global distribution assumed for 
unassessed stocks implies that MPAs around Australia can increase 
catches along the shores of North America3, or that a single fish popula-
tion can be affected both by MPAs in the Caribbean and in the waters off 
of China (Supplementary Fig. 2). When movement rates are low under 
their assumption of pooled density dependence, fishing more outside 
an MPA can produce higher biomass inside the MPA than there would 
have been in the absence of any fishing at all (Supplementary Fig. 5).

The food projections made by Sala et al.1 are based on estimates of 
fishing mortality rates and life history values provided by a previous 
study4. In that study, a Pella–Tomlinson5 population model was used 
and it was assumed that separate stock units exist inside the waters of a 
specific country within a major statistical area designated by the Food 
and Agriculture Organization (FAO) for each unassessed taxonomic 
group, except for highly mobile unassessed stocks, which are assumed 
to be well-mixed within FAO major statistical areas. Sala et al.1 aggre-
gated all the individual unassessed stocks assumed by the previous 

study4 into one global stock per species and converted the underlying 
population-dynamics model to a logistic growth equation. We call these 
assumptions made by Sala et al.1 the ‘global’ scenario.

To assess the effect of these strong choices, we ran a version of the 
analysis by Sala et al.1 changing three key assumptions to be consistent 
with those of the previously published study4: the spatial resolution of 
the simulated populations, the population-dynamics model used and 
the nature of the density dependence. For our base results, we assume 
that density dependence (such as the competition for food or habitat) 
occurs at a local scale, with MPAs providing a spill-over of fish biomass 
to fished areas through the movement dynamics in the model. We call 
this alternative group of assumptions the ‘regional’ scenario.

Under the global assumptions, global food production is maximized 
with an MPA network covering 22% of the carrying capacity, which can 
be achieved by protecting 24% of the ocean surface. Under the regional 
assumptions, the maximum yield benefits were much lower; 38% of the 
maximum benefits of the global assumptions could be achieved by 
protecting 14% of the carrying capacity (29% of ocean surface) (Fig. 1). 
The flatter form of the curve for the regional model in Fig. 1a suggests 
that a greater portion of carrying capacity could be protected without 
substantially reducing global fishery catches. The global results place 
much of the west coast of North America in the top 30% of areas for 
protection, but omit much of the coastal Indian Ocean and the Coral 
Triangle. These results are flipped under our regional assumptions. 
The global assumptions of Sala et al.1 suggest that 46% of the exclusive 
economic zone of the USA could be placed in MPAs while increasing or 
maintaining food production, whereas under our regional assumptions 
that number drops to 13% (Fig. 2).

The assumption that density dependence occurs at the local scales 
used in our regional results is common in the MPA modelling litera-
ture, including in studies6–11 authored by authors of the study by  
Sala et al.1. We tested the sensitivity of our regional results to using the 
same approximation of larvae commonly dispersing outside the MPA to 
fished areas as Sala et al.1 did; the stark contrast in both the magnitude 
and design of a global MPA network for food provision remains (see the 
pooled assumption results in Supplementary Figs. 3 and 4).

Fish often disperse vast distances at one or more phases of their 
life cycle. However, even for the most mobile species, dispersal and 
complete mixing across entire ocean or planetary scales is rare12. Sala 
et al.1 used the spatial stock structure described previously13 for the 
assessed fisheries; the footprints of these stocks are generally much 
smaller than the entire exclusive economic zone of a country, and of 
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the unassessed fisheries (Supplementary Fig. 6). It is inconsistent to 
use the smaller footprints13 for the assessed stocks, as Sala et al.1 have 
done, but then skip past the regional stock structure to the much larger 
single global stock distribution for unassessed species, as assumed in 
the global results. The alternative assumption made previously4 that 
stocks of species that are not highly mobile are contained within coun-
try borders is not perfect, but it is more in line with the best available 
evidence of stock sizes13.

We are not suggesting that the regional results are the ‘right’ findings. 
Instead, we are demonstrating that the central results of Sala et al.1 are 
not robust to changes to their core assumptions. Other shortcomings 
remain in both the global and regional scenarios. The spatial complex-
ity of MPAs is simplified to a two-patch surplus production model. The 
models assume that displacing fishing effort for one species outside an 
MPA has no effect on other species or habitats in the remaining fished 
area; these dynamics must be taken into consideration when assessing 
not only the yield but also the biodiversity and carbon impacts of MPAs.

There are places on Earth where MPAs can benefit food production, 
particularly where stocks are heavily overfished. However, these loca-
tions and the resulting effects on food provision cannot be reliably 
identified using the global-scale model and data used by Sala et al.1. 
Refinements to their assumptions, in accordance with their own  
references, do not just alter the results at the margin, but fundamentally 
change their conclusions at multiple scales. Assessments of the role 
of MPAs in food provision should be wary of these issues, and clearly 
evaluate and communicate key sensitivities and potential trade-offs 
between conservation and food provision arising from alternative sets 
of plausible assumptions, so that communities can make decisions on 
MPAs with the full knowledge of both the potential and uncertainty of 
the effects of MPAs on food security.

Methods
Methods are provided in the Supplementary Information. Owing to 
discrepancies in values between Sala et al.1 and the dataset of ref. 4, we 
restricted our analysis to stocks found in both analyses (1,011 stocks as 
defined by Sala et al.1 out of 1,150 total stocks). We then adjusted the 
maximum sustainable yield for each stock to match the generally lower 
values reported previously4, leaving a set of stocks with the same total 
maximum sustainable yield in both the regional and global analyses. As 
a consequence of these adjustments, the global results are not exactly 
the same as those reported by Sala et al.1, although they are very similar.
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Fig. 1 | The change in global fishery yields and the percentage of global 
ocean in MPAs. a, The change in global fishery yields in millions of tonnes 
(MMT) as a function of the percentage of global carrying capacity (K) in MPAs. 
b, The percentage of global ocean surface in MPAs. Numbers and solid lines 
point to values at the peak of each curve. Vertical dashed line indicates the 
location of 30% on the x axis. Global assumes one global stock per unassessed 
species and a pooled density dependence, following Sala et al.1. Regional 
indicates that stocks are modelled as described previously4 with a local density 
dependence. Using the regional rather than the global assumptions results in a 
62% decrease in maximum yield.
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Fig. 2 | Spatial differences in MPA outcomes between alternative 
assumptions. a, The map shows cells identified in the top 30% by food provision 
of MPAs, where the colour indicates which set of assumptions produced which 
cells, with overlapping cells indicated by the ‘Overlap’ colour. b, The points 
indicate the percentage of the exclusive economic zone (EEZ) of the top-ten 
countries (based on recent FAO reported catches) that could be placed inside 

food-increasing MPAs under each set of assumptions. Existing MPAs are omitted 
because these are automatically included by the model. Global assumes one 
global stock per unassessed species and a pooled density dependence, 
following Sala et al.1. Regional indicates that stocks are modelled as described 
previously4 with local density dependence.
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Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data and materials needed to fully reproduce the results in this 
paper are publicly available at GitHub (https://github.com/DanOvando/
mpas-and-food-unknown) and Figshare (https://doi.org/10.6084/
m9.figshare.16709362.v5).

Code availability
All code needed to fully reproduce the results in this paper are 
publicly available at GitHub (https://github.com/DanOvando/
mpas-and-food-unknown) and Figshare (https://doi.org/10.6084/
m9.figshare.16709362.v5). All analyses were conducted in R (v.4.3.1)14.
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Reply to: Global effects of marine protected 
areas on food security are unknown

Enric Sala1 ✉, Juan Mayorga1,2, Darcy Bradley2, Reniel B. Cabral2, Trisha B. Atwood3, 
Arnaud Auber4, William Cheung5, Christopher Costello2, Francesco Ferretti6, 
Alan M. Friedlander1,7, Steven D. Gaines2, Cristina Garilao8, Whitney Goodell1,7, 
Benjamin S. Halpern9, Audra Hinson3, Kristin Kaschner8, Kathleen Kesner-Reyes9, 
Fabien Leprieur10, Jane Lubchenco11, Jennifer McGowan12, Lance E. Morgan13, David Mouillot10, 
Juliano Palacios-Abrantes5, Hugh P. Possingham14, Kristin D. Rechberger15 & Boris Worm16

replying to D. Ovando et al. Nature https://doi.org/10.1038/s41586-023-06493-8 (2023)

The main goal of our study was to develop a flexible conservation- 
planning framework to prioritize marine protected areas (MPAs) in 
places that would result in multiple benefits today and in the future1. 
Every model has assumptions that will affect its results to varying 
degrees. In the accompanying Comment, Ovando et al.2 challenge 
two important assumptions of our food provision model: (1) the scale 
of spatial connectivity of unassessed stocks and (2) the nature of the 
density dependence. Here, we isolate and test for the effect of reduc-
ing the scale of spatial connectivity and provide arguments for why 
assuming a global density dependence is justified.

Our model estimated the global food-provision benefits of MPAs for 
1,150 fish stocks. For stocks that have formal assessments, we used the 
spatial delineation of each stock to constrain adult and larval dispersal. 
For those stocks without assessment, we used the geographical range 
of the species as the envelope for spatial connectivity. For all stocks, we 
assumed that the contribution of larvae from MPAs distributes homog-
enously within the range of a stock. We vary adult movement accord-
ing to a categorical movement parameter derived from a literature 
review that results in relatively low, medium or high levels of movement 
across the range of the stock. The estimated MPA effects are then the 
changes to equilibrium catch that result from protection accounting for 
adult movement and larval dispersal across stock ranges. By contrast, 
Ovando et al.2 propose a model in which the ecological connectivity of 
unassessed stocks is constrained by the political jurisdictions of coun-
tries (with an exception for migratory tunas). We tested the sensitivity 
of our results to this alternative approach and find modest reductions 
in global food-provision benefits.

We re-ran our original model changing only the extent of ecological 
connectivity for unassessed stocks to the intersection of geographi-
cal ranges and exclusive economic zones (EEZs)—often resulting in 
a smaller spatial footprint than the EEZ spatial constraints used by 
Ovando et al.2—for adult movement, larval connectivity and fisher 
redistribution. The result of this change is a substantial increase in the 
number of modelled stocks from 1,150 in our original model to around 
32,000 distinct stocks. We find that the maximum food-provisioning 
benefits produced under this new model specification are similar to 
our original estimates, and the results hold across both fishing effort 
redistribution scenarios considered (complete effort redistribution and 

no effort redistribution after MPA implementation). Under the assump-
tion of complete effort redistribution, our original model estimated 
5.9 million tonnes (MMT) of additional catch (90% of which could be 
obtained by strategically protecting 5.1% of the ocean), whereas the 
EEZ-constrained model yields a net gain of 5 MMT (90% of this can be 
obtained with 5.5% of the ocean protected). Under the assumption 
of no effort redistribution, our original model estimated 5.2 MMT of 
additional catch (90% of which could be obtained by strategically pro-
tecting 3.8% of the ocean), whereas the EEZ-constrained model yields a 
net gain of 4.4 MMT (90% of which can be obtained by protecting 4.5% 
of the ocean) (Figs. 1–3).

Constraining ecological connectivity to EEZs is not only ecologi-
cally dubious, but it is analytically inappropriate in that it forces the 
prioritization algorithm to maximize pixels for protection within EEZs, 
defeating our goal of producing a true global prioritization. However, 
it further reinforces the robustness of our approach in that it is rela-
tively insensitive to even this substantial spatial constraint proposed 
by Ovando et al.2, resulting in a modest decrease (15%) in maximum 
potential benefits and a small increase in the area needed to achieve 
them (Figs. 1–3). Relative to the original model, the EEZ-constrained 
model identifies priorities in all countries, and it reduces the effect that 
the global spatial patterns of marine productivity have on potential 
food provision benefits, as shown in Fig. 2 of Ovando et al.2.

The second critique of Ovando et al.2 focuses on our choice to model 
density dependence as a global process, with larval production distrib-
uted across the range of individual stocks. They instead propose that 
density dependence should be applied at the local scale, which they 
operationalize in section 1.3.2 of their Supplementary Information by 
constraining the distribution of larvae produced inside MPA borders 
to remain within the MPA. Ovando et al.2 further clarify their definition 
of the local assumption in the caption of their Supplementary Fig. 5 as 
“‘Local’ implies that the growth inside the MPA is a function of biomass 
inside the MPA.” Density-dependent processes in the local case can be 
applied either to the spawning or reproduction stage or to the settle-
ment stage; in both cases, larvae produced inside the MPA all remain 
within the MPA.

Density dependence in spawning or reproduction implies that larval 
production tapers off as the population inside the MPA approaches 
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carrying capacity (which is likely to happen for low-mobility species). 
Density dependence in the settlement stage implies higher competi-
tion between recruits and adults as biomass builds up inside the MPA 
compared with the lower competition for larvae that can disperse and 
settle in fished areas where biomass is lower. Assuming that all larvae 
from an MPA would be self-seeded and experience increased compe-
tition for food and space at settlement as the biomass inside the MPA 
builds up, and assuming that larval production tapers off to zero as 
the population rebuilds, would both substantially reduce fisheries 
benefits from MPAs. This also neglects the recruitment subsidy com-
monly attributed in the literature as a mechanism for MPAs to benefit  
fisheries3–5. We posit that these assumptions are driving the large sen-
sitivities reported by Ovando et al.2, as we have shown that the scale of 
spatial connectivity does not substantially alter our results.

That leaves the question as to which set of assumptions (local ver-
sus global) would be more ecologically defensible. Naturally, neither 
assumption is correct for all fish stocks, and reality probably falls 
somewhere in between. Density-dependent effects on larval produc-
tion and settlement are relevant to the food benefits of MPAs, because 
they determine changes to the production function as a population 
rebuilds inside an MPA and approaches carrying capacity6. Studies 
demonstrate that larval production typically grows faster than biomass 
within MPAs4,7,8. In other words, most species increase larval production 
as the fish populations inside the MPA approach carrying capacity; 
larval production does not typically taper off as populations rebuild 
in MPAs. In fact, larval production scales hyperallometrically with fish 
mass at the spawning stage, and because larger fish tend to be found in 
higher abundance in highly protected MPAs than in unprotected areas, 
our model probably underestimates larval subsidies from MPAs7. Thus, 
we believe our density-dependence assumption is well supported by 
the scientific literature.

Regarding larval dispersal, several studies have suggested that the 
scales of larval transport typically far exceed MPA size3,5,8,9. The larger 
the population inside the MPA, the more larvae it can produce, and these 
larvae can contribute to fisheries productivity hundreds of kilometres 

away, even for populations with sessile adults. For example, genetic 
studies of species on the Great Barrier Reef have found that adults 
within long-established MPAs that cover 28% of the reef are the parents 
of more than half of the recruits to fished areas outside the MPAs8. In 
fact, recent evidence has shown that many species have extremely long 
dispersal distances and fish larvae and adults cross multiple political 
jurisdictions10,11, although we agree with Ovando et al.2 that assuming 
truly global dispersal is inaccurate (as we stated in our original paper1). 
However, the alternative scenario proposed by Ovando et al.2 of no 
dispersal outside MPAs and no exchange of larvae and adult biomass 
among countries is also incorrect for most marine species. As long 
as one assumes that larvae commonly disperse outside the MPAs, 
regardless of how far outside, our overall food provision benefits will 
be similar, as we have shown. However, the details of actual dispersal 
distances will greatly affect the specific locations that receive those ben-
efits, so better estimates of larval connectivity and hydrodynamically 
influenced source–sink dynamics will be very helpful in determining 
the true extent of spillover and pinpointing the spatial distribution of 
food provision beneficiaries of MPAs. Furthermore, ignoring the spatial 
connectivity of species results in a globally optimal MPA network in 
which all countries have some area protected, but overall more MPAs 
are prioritized in low-productivity areas, and fewer MPAs are prioritized 
in highly productive areas relative to our original result1.

Methods
We model fish population dynamics in the presence of an MPA as a 
two-patch system composed of a fished area and an MPA. We model the 
biomass transitions of each individual stock j inside (Bin,j) and outside 
(Bout,j) an MPA as follows for biomass transition inside the MPA:

B B f B= + (⋅) −j t j t j t j tin, , +1 in, , in, , trans, ,

and for biomass transition outside the MPA (or in the fished area)

B E B f B= (1 − ) + (⋅) +j t j t j t j t j tout, , +1 out, , out, , out, , trans, ,

where t is the time in years, f (⋅)in  and f (⋅)out  are the added biomass  
inside the MPA and in the fished area through larval production and 
dispersal, Btrans is the exchange of biomass between the MPA and the 
fished area through adult movement, and Eout is the exploitation rate 
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Fig. 1 | Maximum food-provisioning benefits generated from global versus 
local models under two fishing effort redistribution assumptions. The 
‘global’ model represents the results reported in Sala et al.1 and the ‘local’ 
model is a version in which larval dispersal distance and adult movement are 
constrained within the EEZ of the countries, but allows for the dispersal of 
larvae outside MPAs. The two fishing effort redistribution assumptions  
are the same as those reported in Sala et al.1 in which A1 assumes no effort 
redistribution (that is, fishing effort in the remaining fished areas will remain 
the same) and A2 assumes complete effort redistribution (that is, fishing effort 
from MPAs relocates to the remaining fishing areas outside MPAs). Only the 
unassessed stocks were partitioned by EEZ, as all other stocks have spatially 
defined management boundaries.
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Fig. 2 | Global food benefit accumulation curves. The blue curves represent 
the change in global catch as more area of the ocean is protected using the 
original model under the no effort redistribution assumption and complete 
effort redistribution. The red and orange curves represent the net change in 
global catch if individual fish stocks are constrained to the EEZs.
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experienced by the stock in the fished area.The transfer of biomass 
between the MPA and the fished area through adult movement is  
given by:









B m R B

R

R
B= (1 − ) −

1 −j t j j j t
j

j
j ttrans, , in, , out, ,

where m is the adult mobility (parameterized using categorical adult 
mobility information for each species that considers low (m = 0.1) 
medium (m = 0.3) and high (m = 0.9) movement capacities based on 
a literature review) and R is the MPA size defined as the proportion of 
the geographical range of a species in the MPA (see ‘Adult movement’ 
for the derivation of the biomass transfer equation).

Fish that are located inside and outside the MPA contribute to the 
population growth inside and outside MPA through larval exchanges. 
We model larval production and transport as a common larval pool. 
This means that larval productions inside and outside the MPA are 
pooled and then distribute homogeneously inside and outside the 
MPA (within the range of a stock) proportional to the size of MPA and 
the remaining fished area according to:









f R r B B

B B
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+
j t j j j t j t

j t j t

j
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(⋅) = (1 − ) ( + ) 1 −

+
j t j j j t j t

j t j t

j
out, , in, , out, ,

in, , out, ,

Our model fundamentally differs from that of Ovando et al.2 as they 
assumed that fish populations in the MPA and the fished area are con-
nected only through adult movement, that is by Btrans. Ovando et al.2 
defined their local assumption in Supplementary Fig. 5 as follows: 
‘Local’ implies that growth inside the MPA is a function of biomass 
inside the MPA. This means that f j tin, ,

 is a function of biomass inside 
the MPA (Bin,j,t) and f j tout, ,

 is a function of the biomass in the fished area 
(Bout,j,t). Under the assumption by Ovando et al.2, there will be no larval 
subsidies from the MPA to the fished area.

We agree with Ovando et al.2 that under the boundary condition of 
m = 0, which is equivalent to true zero adult movement and not eco-
logically relevant to the fished species considered in our approach, 
our model can exhibit bizarre behaviour in which the biomass inside 
the MPA can increase as fishing pressure outside the MPA increases. 
Although biomass has not been used as an output in our model, cau-
tion must be taken when using our model to track biomass inside the 
MPA under the boundary condition of m = 0.

Adult movement
The transfer of biomass between the MPA and the fished area through 
adult movement (Btrans) was derived using the following logic.

Under full biomass transfer (FT) between the MPA and the fished 
area, in which this transfer results in the biomass density inside and 
outside the MPA being equal, we have:

B B

R

B B

R

−
=

+

1 −
j j j jin, trans, FT out, trans, FT

Solving for Btrans,jFT, we have:

B R B RB= (1 − ) − .j j j jtrans, FT in, out,

Species movement rates influence the exchange of biomass between 
the MPA and the fished area. The exchange will be minimal for species 
with low adult mobility and large for species with high adult mobility. 
Using m as a parameter describing species mobility, we can generalize 
the transfer of biomass as:

B m R B R B B

m R B
R

R
B

= ((1 − ) − ) or

= (1 − ) −
1 −

j j j j j j j t

j j j t
j

j
j t

trans, in, out, trans, ,

in, , out, ,











Sensitivity analysis
In addition to the assumption by Ovando et al.2 that larvae will not 
disperse out of an MPA, the authors also propose that the scale of move-
ment by adult fish should be constrained within the surrounding EEZ. 
We test the sensitivity of our model to this idea by constraining the 
distribution of larvae and adult movement to the surrounding EEZs, 
but use the same population model as in our original paper1 and keep 
all other parameters unchanged to isolate the effect of the approach 
proposed by Ovando et al.2. We test our results under both effort redis-
tribution scenarios (that is, complete effort redistribution and no effort 
redistribution).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The underlying data used in this study are available from the sources 
listed in the supplementary information of the original paper1.

Code availability
The code supporting the findings of this additional analysis is available at 
GitHub (https://github.com/emlab-ucsb/ocean-conservation-priorities).
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Research sample We used data on: 
Fisheries - RAM Legacy Database, Global Fishing Watch 
Marine Protected Areas - Atlas of Marine Protection

Sampling strategy N/A - This is a modeling study using available data

Data collection Data were obtained from online repositories and directly from colleagues

Timing and spatial scale Our data range from 2006 (marine ecoregion classification) to present

Data exclusions No data were excluded from our modeling study.

Reproducibility N/A - No experiments were performed

Randomization N/A - No experiments were performed

Blinding Blinding does not apply because this is a modeling study not involving experimental subjects.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Global effects of marine protected areas on food security are unknown

	Methods

	Reporting summary

	Acknowledgements
	Fig. 1 The change in global fishery yields and the percentage of global ocean in MPAs.
	Fig. 2 Spatial differences in MPA outcomes between alternative assumptions.

	6494.pdf
	Reply to: Global effects of marine protected areas on food security are unknown

	Methods

	Adult movement

	Sensitivity analysis


	Reporting summary

	Fig. 1 Maximum food-provisioning benefits generated from global versus local models under two fishing effort redistribution assumptions.
	Fig. 2 Global food benefit accumulation curves.
	Fig. 3 Differences in global conservation priorities between the global and the EEZ-constrained models.





