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Abstract

Leatherback sea turtles (Dermochelys coriacea) migrate to temperate Canadian Atlantic

waters to feed on gelatinous zooplankton (‘jellyfish’) every summer. However, the spatio-

temporal connection between predator foraging and prey-field dynamics has not been stud-

ied at the large scales over which these migratory animals occur. We use 8903 tows of

groundfish survey jellyfish bycatch data between 2006–2017 to reveal spatial jellyfish hot

spots, and matched these data to satellite-telemetry leatherback data over time and space.

We found highly significant overlap of jellyfish and leatherback distribution on the Scotian

Shelf (r = 0.89), moderately strong correlations of jellyfish and leatherback spatial hot spots

in the Gulf of St. Lawrence (r = 0.59), and strong correlations in the Bay of Fundy (r = 0.74),

which supports much lower jellyfish density. Over time, jellyfish bycatch data revealed a

slight northward range shift in the Gulf of St. Lawrence, consistent with gradual warming of

these waters. Two-stage generalized linear modelling corroborated that sea surface temper-

ature, year, and region were significant predictors of jellyfish biomass, suggesting a climate

signal on jellyfish distribution, which may shift leatherback critical feeding habitat over time.

These findings are useful in predicting dynamic habitat use for endangered leatherback tur-

tles, and can help to anticipate large-scale changes in their distribution in response to cli-

mate-related changes in prey availability.

Introduction

Highly migratory marine species have broad geographic ranges which can expose them to a

range of natural and anthropogenic threats [1]. Migratory movements often take place

between predictable locations, such as breeding and feeding habitats, that meet different life-

history requirements [2]. Such critical habitat areas need to be properly identified, managed,

and conserved in order to maintain viable populations [3]. Environmental variability and

change, however, can make conservation efforts more difficult, as it may shift the quality and
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distribution of these habitats [4,5]. Hence, understanding and predicting such dynamic

changes is crucial to designing adaptive management measures.

In this study, we investigate the spatio-temporal relationship between highly migratory

leatherback sea turtles (Dermochelys coriacea), and their scyphozoan jellyfish prey in their

summer foraging habitat off Atlantic Canada. Northwest Atlantic leatherbacks are currently

considered endangered by the International Union for the Conservation of Nature [6] and

Canadian species at risk legislation [7], and the future recovery of this subpopulation depends

on conservation efforts in Atlantic Canadian foraging habitats [8]. These waters host one of

the largest seasonal foraging aggregations of leatherbacks in the Atlantic [9], foraging predomi-

nantly on the larger lion’s mane (Cyanea capillata) and to a lesser extent on smaller moon jel-

lyfish (Aurelia aurita) [10–13]. When present in Atlantic Canadian foraging habitats,

leatherbacks may procure 20 to 59% of their annual energy budget over a single season [3]. It

is, therefore, evident that Canadian foraging habitat is critical to leatherback turtle resource

acquisition, however, the spatial relationship between leatherback sea turtles and their jellyfish

prey has not been explored there [13–15].

This study builds upon previous work demonstrating a seasonal correlation between the

timing of annual jellyfish blooms in Canadian waters and the arrival of migrating leatherbacks

[13]. Here we explore the dynamic nature of this relationship in space and time and consider if

observed climate variability may be affecting this relationship, and the distribution of leather-

back foraging habitat. Changes in temperature can directly influence strobilation [16], growth

rates [17], and medusa senescence [18, 19], as well as phytoplankton and zooplankton commu-

nity structure [20, 21]. C. capillata, which is likely the most important forage species for leath-

erbacks in Atlantic Canada [11, 13, 22], is a cold-water species that could suffer from warming

waters [16, 23], potentially shifting its distribution in response. The Northwest Atlantic has

been warming since 1980, and is projected to continue on this trend faster than other ocean

basins [24–26] making it a natural laboratory to study the complex effects of climate change

on marine predators and their prey. Recent shifts in right whale habitat in the region, for

example, were linked to climate-related shifts in copepod distribution, and resulted in large

additional whale mortality due to emerging new threats in their novel feeding habitat [5, 27–

29]. Such observations partly motivate the current study, as changes in leatherback scyphozoan

prey distributions could potentially enhance threats to this endangered species.

We attempted to answer the following research questions: 1) How do spatial hot spots of jel-

lyfish and leatherback sea turtles in Atlantic Canada compare, 2) are jellyfish ranges expanding

or shifting over time, and 3) are any changes in jellyfish abundance and distribution driven by

changes in sea surface temperature (SST)? Such knowledge could expand understanding of

critical habitat for leatherbacks in Canadian waters, and inform effective recovery planning for

this species.

Materials and methods

Study region

Atlantic Canadian waters are known to be important seasonal foraging areas for leatherback

sea turtles [9], which are found in three main areas: the Bay of Fundy, Scotian Shelf, and Gulf

of St. Lawrence (Fig 1). These productive waters harbor seasonally abundant gelatinous zoo-

plankton, including scyphozoan species such as lion’s mane and moon jellyfish [10–13]. Here

we combined 12-year data sets for jellyfish and leatherback distribution throughout the region

with sea surface temperature data to explore whether changes in ocean climate may affect jelly-

fish distribution and leatherback foraging habitat.
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Jellyfish data

The Canadian Department of Fisheries and Oceans (DFO) performs annual scientific trawl

surveys to provide information on trends in biomass and abundance for commercially impor-

tant fish species in the Maritimes Region [30, 31]. Although these are bottom trawls, mostly

targeting groundfish species, all other species caught as bycatch, including jellyfish, are

recorded.

Data were collected from the Bay of Fundy, Scotian Shelf, and Gulf of St. Lawrence regions

(Fig 1). Jellyfish bycatch was recorded as ‘scyphozoan’ and not usually specific to species. Jelly-

fish were weighed to determine total wet weight (kg) for each trawl. Jellyfish data collection

was implemented in annual trawl survey areas at different times: Scotian Shelf: 2006–2017,

Southern Gulf of St. Lawrence: 1985–2017, and Northern Gulf of St. Lawrence: 2004–2017.

Groundfish surveys on the Scotian Shelf occur for four to five weeks, normally centred on the

month of July. The surveys in the Southern Gulf of St. Lawrence occur through the month of

August (sentinel surveys, with observers on commercial fishing vessels) and the month of Sep-

tember (research vessel). The groundfish surveys in the Northern Gulf of St. Lawrence occur

during the month of September. All of these groundfish surveys use a Western IIA trawl sys-

tem, which has a cod-end mesh of 19mm, headline height of 3.5m and wingspread of 12m

Fig 1. Study species and area in Atlantic Canada. A) Leatherback sea turtle (photo by Canadian Sea Turtle Network); B) lions mane jellyfish

(C. capillata); C) biogeographical regions: Bay of Fundy in light blue, Scotian Shelf in dark blue, and the Gulf of St. Lawrence in green

(Magdalen Islands circled within); regions are separated by black line; D) Department of Fisheries and Oceans trawl survey jellyfish presence

(green dots) and absence (blue dots) 2006–2017.

https://doi.org/10.1371/journal.pone.0232628.g001
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[32]. However, the research vessel and gear type may differ if there is required maintenance in

a particular year. Outside of these bycatch data, there are currently no dedicated surveys to

determine jellyfish distribution, abundance, or biomass in the Canadian Maritimes Region.

Survey data were rasterized into 0.5 x 0.5 degree gridded cells corresponding to the study

region (Fig 1). Jellyfish wet weight was standardized into catch per unit of effort (CPUE) per

month in each cell, by dividing by the total number of trawls in each cell. Jellyfish presence

was also standardized into CPUE by dividing the number of trawls with jellyfish present, by

the total number of trawls in each cell.

Leatherback data

We considered binned density data from 62 leatherback turtles tracked in the study region

(2006 to 2017) by DFO and collaborators using Argos satellite-linked tags. Specifically, we

used daily interpolated median latitude and longitude positions of tagged turtles falling within

0.5 x 0.5 degree gridded cells corresponding to the Canadian Exclusive Economic Zone (turtle

days per cell). Turtle days are here defined as the total number of days a leatherback turtle was

present in each 0.5 x 0.5 degree cell. This cell binning approach captures the range of error

associated with ARGOS location estimates and standardizes turtle location binning for satellite

tags spanning multiple brands, models, and programmed transmission regimes.

SST data

SST data from 2006 to 2017 were provided by DFO (Advanced Very High Resolution Radiom-

eter [AVHRR] SST Dataset, Remote Sensing Group, Bedford Institute of Oceanography;

Ocean Ecology Laboratory, Ocean Biology Processing Group—composites created by the

Remote Sensing Group at BIO). Satellite-derived SST (AVHRR) geotiff files were downloaded

in monthly intervals at 1.5 km resolution and converted to the monthly average in each 0.5 x

0.5 degree grid cell (executed in ArcGIS 10.5).

Data analysis

Spatial overlap of jellyfish and leatherbacks. An optimized hot spot analysis was con-

ducted based on the Getis-Ord Gi� statistic (executed in ArcGIS 10.5) to analyse spatial clus-

tering of 1) jellyfish bycatch presence, 2) jellyfish bycatch biomass, and 3) leatherback turtle

days. We used jellyfish bycatch presence to examine jellyfish distribution, and jellyfish bycatch

biomass to examine jellyfish abundance. This optimized hot spot analysis tests the null hypoth-

esis that the spatial relationship between neighbouring hot spots (high values) and cold spots

(low values) is due to random clustering and is given as:

G�i ¼
Pn

j¼1
wi;jxj � �x

Pn
j¼1

wi;j

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

j¼1
w2
i;j �
Pn

j¼1
wi;j

� �2

n� 1

r

where xj is the attribute value for feature j (features are the value in each 0.5 x 0.5 degree cell

for 1) standardized jellyfish presence, 2) standardized jellyfish biomass, and 3) leatherback tur-

tle days), wi,j is the spatial weight between the feature i and j, n is equal to the total number of

features (the total number of 0.5 x 0.5 degree cells), and:

�x ¼
Pn

j¼1
xj

n
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and:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

x2
j

n

s

Local patterns of standardized 1) jellyfish bycatch occurrence, 2) jellyfish weight, and 3)

leatherback binned density, were each identified using a nearest-neighbour approach, and

compared to the whole study area. The Getis-Ord Gi� statistics produces z-scores, which are

represented numerically. Z-scores return a number that informs if the clustering of neighbour-

ing points is attributed to random spatial processes (given their distance and value relative to

the mean). A z-score greater than 1.65 represents a ‘hot spot’–a statistically significant spatial

clustering of high positive values, whereas a z-score less than -1.65 represents a ‘cold spot’. No

apparent clustering is indicated by a near zero z-score. Confidence levels are associated with z-

score, where: z-score>2.58 = hot spot with 99% confidence; z-score 1.96 to 2.58 = hot spot

with 95% confidence; z-score 1.65 to 1.96 = hot spot with 90% confidence; z-score (-1.65) to

1.65 = not significant; z-score (-1.65) to (-1.96) = cold spot with 90% confidence; z-score

(-1.96) to (-2.58) = cold spot with 95% confidence; and z-score< (-2.58) = cold spot with 99%

confidence. The hot spot analysis corrects for both multiple testing and spatial dependence

using the False Discovery Rate [33].

Pearson’s correlation coefficient was calculated to determine whether there was significant

overlap between jellyfish and leatherback hot spots, using the z-scores assigned to each cell.

The z-scores of jellyfish presence and jellyfish weight were regressed against leatherback sea

turtle z-scores in each of the three major regions (Bay of Fundy, Scotian Shelf, and Gulf of

St. Lawrence–Fig 1).

Spatio-temporal trends of jellyfish bycatch in the groundfish surveys. To examine

whether jellyfish distributions are shifting over time, the groundfish survey data were grouped

into three bins, based on year: 2006–2009, 2010–2013, and 2014–2017. A hot spot analysis

based on the Getis-Ord Gi� statistic (executed in ArcGIS 10.5) was used to analyse spatial clus-

tering of both jellyfish presence and jellyfish weight in the groundfish surveys (see methods for

‘Spatial overlap of jellyfish and leatherbacks’ above for details).

To test whether jellyfish occurrence patterns are shifting over time due to the effects of

changing temperatures, we calculated the average SST over the three months that the ground-

fish surveys take place (July, August, and September) for each region (Bay of Fundy, Scotian

Shelf, and Gulf of St. Lawrence) for each year (2006 to 2017) (see S1 Table for spatial variations

in mean SST). A linear regression was used to determine the rate of change in SST in each

region over time. We also calculated the annual average latitude of jellyfish observations in the

groundfish surveys in each region for each year. Pearson’s correlation coefficient was used to

determine whether there was a strong relationship between the mean SST and mean average

latitude of jellyfish observation per region over time.

Modelling trends of jellyfish biomass. The standardized jellyfish biomass data from the

groundfish surveys were transformed using Tukey’s Ladder of Powers, as the data was not nor-

mally distributed and was heteroscedastic. All statistical modelling was done in R (version

3.6.0) [34]. To evaluate a potential relationship between SST and biomass of jellyfish in the

groundfish surveys, a two-stage gamma (“hurdle”) model was fit to the data [35]. This general-

ized linear model (GLM) was chosen due to zero-inflation in our data, along with a continuous

distribution (weight). The first stage modeled the probability of jellyfish presence compared to

jellyfish absence using a binomial GLM and a logit link function. The second stage modeled

the standardized jellyfish biomass data only, using a GLM with a gamma distribution and a log

link function. Jellyfish presence was the dependent variable in stage 1 of the two-stage gamma
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model, while standardized jellyfish biomass was the dependent variable in stage 2 of the two-

stage gamma model. Independent variables included: SST, year, region, latitude, longitude,

and an interaction between SST and year. To account for multicollinearity, the variables SST

and year were centered (subtract the mean method) before creating the interaction term. To

ensure model assumptions were met, residuals were checked.

Model selection was performed by comparing all possible subsets of the full model using

Akaike’s information criterion (AIC). Differences in AIC of<2 indicate there is not a substan-

tial difference between models [36].

Results

Jellyfish data

A total of 8903 individual trawl survey tows were considered, with 117 locations in the Bay of

Fundy, 2322 on the Scotian Shelf, and 6464 in the Gulf of St. Lawrence (Table 1). Jellyfish were

present in 4137 trawls, with a total biomass of 9395.4 kg (Fig 1B). There were 2372 trawls with

less than 1kg of jellyfish reported, spread quite evenly throughout the study region (Fig 2).

Tows with catches over 10kg were mostly limited to the Gulf of St. Lawrence (Fig 2) (see S1 Fig

for further breakdown of sampling effort).

In the Scotian Shelf and Bay of Fundy datasets, 97.6% of jellyfish were identified simply as

‘scyphozoa’. The other 2.4% were assigned species codes of C. capillata and Pelagia noctiluca.

In the northern Gulf of St. Lawrence dataset, 43.5% of jellyfish were identified as ‘scyphozoa’,

and the remaining 56.5% were identified to species (26.1% C. capillata, 19.7% Periphylla per-
iphylla, 8.9% A. aurita, 1.8% Atolla wyvillei).

Spatial overlap of jellyfish and leatherbacks

The optimized hot spot analysis highlighted somewhat congruent regional hot spots of 1)

jellyfish presence, 2) jellyfish biomass, and 3) leatherback density, within the Gulf of

Table 1. DFO groundfish surveys by region and year. ‘Biomass (kg)’ is the wet weight of jellyfish; ‘CPUE’ = catch per unit effort; ‘Jellyfish Pres’ is the number of trawls

with jellyfish presence; and ‘% Presence’ is the percent of trawls with jellyfish presence.

Bay of Fundy Scotian Shelf Gulf of St. Lawrence

Year Total

Trawls

Biomass

(kg)

CPUE

(kg/

tow)

Jellyfish

Pres.

%

Presence

Total

Trawls

Biomass

(kg)

CPUE

(kg/

tow)

Jellyfish

Pres.

% JP Total

Trawls

Biomass

(kg)

CPUE

(kg/

tow)

Jellyfish

Pres.

%

Presence

2006 0 0.00 0.000 0 0% 33 25.1 0.76 16 48% 580 1091.6 1.88 352 61%

2007 11 0.00 0.000 0 0% 173 32.8 0.19 29 17% 579 705.0 1.22 286 49%

2008 7 0.00 0.000 0 0% 160 26.6 0.17 51 32% 617 387.9 0.63 253 41%

2009 0 0.00 0.000 0 0% 207 28.5 0.14 44 21% 525 700.5 1.33 306 58%

2010 15 0.01 0.001 1 7% 224 44.0 0.20 59 26% 508 552.2 1.09 202 40%

2011 6 0.15 0.025 1 17% 246 133.1 0.54 74 30% 478 1030.9 2.16 325 68%

2012 7 0.00 0.000 0 0% 222 44.5 0.20 40 18% 529 1149.2 2.17 242 46%

2013 18 0.24 0.014 3 17% 279 201.0 0.72 111 40% 496 1321.5 2.66 291 59%

2014 14 0.56 0.040 1 7% 212 92.1 0.43 55 26% 623 538.7 0.87 334 54%

2015 15 1.64 0.109 3 20% 172 23.8 0.14 29 17% 640 456.3 0.71 394 62%

2016 10 0.00 0.000 0 0% 208 15.6 0.08 44 21% 560 570.2 1.02 327 58%

2017 14 1.57 0.112 7 50% 186 41.5 0.22 122 66% 329 178.4 0.54 135 41%

Total 117 4.16 0.036 16 14% 2322 708.7 0.31 674 29% 6464 8682.5 1.34 3447 53%

Mean 9.8 0.35 0.025 1 10% 193.5 59.06 0.32 56 30% 538.7 723.5 1.36 110 53%

±5.9 ±60.6 ±84.2

https://doi.org/10.1371/journal.pone.0232628.t001
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St. Lawrence. These areas were classified as statistically significant spatial clusters, with 99%

confidence (Fig 3).

The major jellyfish presence hot spot surrounds the Magdalen Islands in the Central Gulf of

St. Lawrence, extending north along the western coast of Newfoundland and east to the Cabot

Strait (Fig 3A). A smaller hot spot is seen off the northeast tip of Cape Breton. Cold spots are

identified in the Bay of Fundy and south west Scotian Shelf (Fig 3A)

The statistically significant hot spot for leatherback binned density also surrounds the Mag-

dalen Islands, extends through the Cabot Strait, and around the north east side of Cape Breton

(Fig 3B). Significant cold spots are identified in the Bay of Fundy, the St. Lawrence Estuary,

and the west coast of Newfoundland (Fig 3B).

The significant hot spot for jellyfish biomass covers most of the Gulf of St. Lawrence (Fig 3C).

A statistically significant cold spot covers both the Bay of Fundy and the Scotian Shelf (Fig 3C).

The z-scores assigned to each 0.5 x 0.5 degree cell for jellyfish presence or jellyfish biomass

were each measured against the leatherback sea turtle z-scores in each of the three major

regions (Bay of Fundy, Scotian Shelf, and Gulf of St. Lawrence) (Fig 4). Pearson’s correlation

revealed a moderate association between jellyfish presence and leatherback turtle z-scores

(r = 0.4640, n = 18, p = 0.0524), and a strong correlation between jellyfish weight and leather-

back turtles z-scores (r = 0.7440, n = 18, p = 0.0004) in the Bay of Fundy (Fig 4A and 4B). Pear-

son’s correlation revealed a strong association between jellyfish presence and leatherback

turtle z-scores (r = 0.7557, n = 166, p<0.001), and a very strong correlation between jellyfish

weight and leatherback turtle z-scores (r = 0.8806, n = 166, p<0.001 on the Scotian Shelf (Fig

4C and 4D). Pearson’s correlation revealed a weak association between jellyfish presence and

Fig 2. Jellyfish distribution by weight per survey tow. A) No jellyfish present in survey; B) Jellyfish present in survey, under

1kg (mostly likely between 1 to 5 individuals); C) Jellyfish present in survey, between 1 and 10kg biomass; and D) Jellyfish

present in survey, over 10kg biomass.

https://doi.org/10.1371/journal.pone.0232628.g002
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leatherback turtle z-scores (r = 0.2949, n = 137, p = 0.0005), and moderate association between

jellyfish weight and leatherback turtle z-scores (r = 0.5881, n = 137, p<0.0001) in the Gulf of

St. Lawrence (Fig 4E and 4F).

Fig 3. Optimized hot spot analysis (2006–2017). A) jellyfish presence (standardized), B) leatherback turtle days (days

spent in each 0.5 x 0.5 degree cell), and C) jellyfish weight (standardized).

https://doi.org/10.1371/journal.pone.0232628.g003

Fig 4. Predicting turtle habitat use from jellyfish data. Hot spot analysis z-scores compared for leatherbacks and

jellyfish in each region with line of best fit. A) Bay of Fundy leatherback z-scores and jellyfish presence z-scores

(r = 0.464, n = 18, p = 0.052); B) Bay of Fundy leatherback z-scores and jellyfish weight z-scores (r = 0.744, n = 18,

p< 0.001); C) Scotian Shelf leatherback z-scores and jellyfish presence z-scores (r = 0.756, n = 166, p< 0.001); D)

Scotian Shelf leatherback z-scores and jellyfish weight z-scores (r = 0.881, n = 166, p< 0.001); E) Gulf of St. Lawrence

leatherback z-scores and jellyfish presence z-scores (r = 0.295, n = 137, p< 0.001); and F) Gulf of St. Lawrence

leatherback z-scores and jellyfish weight z-scores (r = 0.588, n = 137, p< 0.001).

https://doi.org/10.1371/journal.pone.0232628.g004
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Spatio-temporal trends of jellyfish bycatch

The optimized hot spot analysis for jellyfish presence and weight over time highlighted hot

spots within the Gulf of St. Lawrence, and in particular, the areas east and north of the Magda-

len Islands as hot spots of jellyfish bycatch (both presence and weight) in the DFO surveys (Fig

5). These areas were classified as statistically significant spatial clusters, with 99% confidence.

Statistically significant clusters of 0.5 x 0.5 degree cells of jellyfish bycatch (standardized

presence/absence and biomass) were identified for the periods 2006–2009, 2010–2013, and

2014–2017 (Fig 5; hot spots > 90% [z-scores > 1.65]). The clusters of jellyfish hot spots shift

slightly between presence (Fig 5A–5C) and biomass data (Fig 5D–5F), and between each time

period.

The center of the jellyfish hot spot distribution appeared to shift slightly northwards for

both presence (Fig 5A–5C) and biomass data (Fig 5D–5F), but with regional variation, for

example in the Cabot Strait area between Nova Scotia and Newfoundland. Statistically signifi-

cant jellyfish cold spots are highlighted in similar regions for both presence (Fig 5A–5C) and

biomass data (Fig 5D–5F), in the Bay of Fundy and around the south west Scotian Shelf.

To test whether jellyfish occurrence patterns are shifting in response to changes in surface

temperature, we calculated the average SST over the three month period that the surveys take

place for each of the three regions for each year, and the annual average latitude of jellyfish

observations in the groundfish surveys. The Bay of Fundy showed warming trends over the 12

year period, with an average increase of 0.06˚C per year (Fig 6A). There was no discernible pat-

tern of jellyfish distribution shifts, largely due to the sparseness of jellyfish in this region (i.e.

2006, 2007, 2008, 2009, 2012, and 2016). On the Scotian Shelf, SST showed a general warming

trend over time, with an average increase of 0.11˚C per year (Fig 6B). The average latitude of

Fig 5. Optimized hot spot analysis of jellyfish occurrence (A—C), and jellyfish weight (kg) (D—F) in the groundfish surveys for 2006 to 2009 (A and D), 2010 to 2013 (B

and E), and 2014 to 2017 (C and F). Magdalen Islands are circled within the Gulf of St. Lawrence (A).

https://doi.org/10.1371/journal.pone.0232628.g005
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jellyfish observations showed a negative trend with a decrease of 0.091 degrees per year (S2

Fig). Pearson’s correlation revealed no linear correlation between the two (r = -0.1948, n = 12,

p = 0.544) (S2 Fig). In the Gulf of St. Lawrence, there was a slight warming trend over time,

with an increase of 0.01˚C per year (Fig 6C). The average latitude of jellyfish observations

showed a positive trend shifting northwards 0.056 degrees per year (S2 Fig). Pearson’s correla-

tion revealed no linear association between SST and average latitude per year (r = 0.4377,

n = 11, p = 0.1782) (S2 Fig).

Modelling trends of jellyfish biomass

Among 15 candidate models (see S2 Table) testing for possible linkages between standardized

jellyfish biomass in the groundfish surveys and explanatory variables, model glm11 was chosen

based on AIC. It included the variables SST, year, region, latitude, longitude, and an interac-

tion between SST and year (Table 2).

GLMs indicated that both the probability of jellyfish presence (Hurdle model Stage 1) and

the standardized weight (Hurdle Model Stage 2) significantly increased with increases in SST

(p< 0.01, Table 2). Both jellyfish presence and standardized weight significantly increase over

time (year, p< 0.01, Table 2). The regional effect was significant for the Gulf of St. Lawrence

(p = 0.03, Table 2), while there were no significant effects for the Scotian Shelf or Bay of Fundy.

There were no region effects on standardized weight (Stage 2, Table 2). The probability of jelly-

fish presence significantly increased with latitude (Stage 1, p< 0.01), and longitude (Stage 1,

p< 001). There was no latitude effect on jellyfish weight, however, there was a significant posi-

tive effect of longitude on jellyfish weight (Stage 2, p< 0.01). Finally, there was a significant SST

by year interaction for both jellyfish presence and standardized weight (Stage 1, Stage 2, both

p< 0.01), indicating that the effects of SST on jellyfish slightly decreased over time.

Discussion

The principal objectives of this study were to better understand the spatial overlap of jellyfish

and leatherback sea turtles in Atlantic Canada, and to explore whether jellyfish distributions

Fig 6. Mean SST over the study period (July, August, and September) from 2006 to 2017. A) Bay of Fundy SST over

time, y = 0.0596x + 13.024; B) Scotian Shelf SST over time, y = 0.1144x + 15.814; and C) Gulf of St. Lawrence SST over

time, y = 0.0111x + 14.707.

https://doi.org/10.1371/journal.pone.0232628.g006

Table 2. Statistical analysis.

Presence model (Hurdle Stage 1) Weight model (Hurdle Stage 2)
Variable Coefficient SE z-value P Coefficient SE z-value P

Intercept -3.792 2.862 -1.325 0.185 -0.692 0.620 -1.116 0.265

SST 0.358 0.046 7.783 p<0.001 0.077 0.009 8.282 p<0.001

Year 0.366 0.089 4.100 p<0.001 0.056 0.019 2.949 0.003

GSL 0.776 0.358 2.168 0.030 0.177 0.110 1.615 0.106

SS -0.061 0.342 -0.178 0.859 -0.076 0.107 -0.711 0.477

Latitude 0.135 0.040 3.368 0.001 0.005 0.008 0.590 0.555

Longitude 0.129 0.019 6.845 p<0.001 0.016 0.004 3.629 p<0.001

SST:Year -0.024 0.006 -4.298 p<0.001 -0.004 0.001 -3.627 p<0.001

Results of two stage gamma hurdle models are shown. Stage 1 modelled the probability of the presence (non-zero) compared to the absence (0) of bycatch using a GLM

with a binomial distribution and a logit link function. Stage 2 modelled the catch data only, using a GLM with a gamma distribution and a log link function. Significant

variables (p < 0.05) in bold. GSL = Gulf of St. Lawrence; SS = Scotian Shelf.

https://doi.org/10.1371/journal.pone.0232628.t002
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are changing with changing environmental conditions. The results provide insights into previ-

ously undocumented leatherback−jellyfish spatial interactions and contribute to the under-

standing of critical habitat for this endangered species. The results also highlight the utility of

bycatch data as an ecological research tool in data-poor situations.

The optimized hot spot analysis highlighted congruent regional hot spots of 1) jellyfish

presence, 2) jellyfish biomass, and 3) leatherback density, within the Gulf of St. Lawrence (Fig

3). The Gulf of St. Lawrence has been identified as important habitat for leatherback turtles

[37]. Jellyfish distribution in Atlantic Canadian waters was examined using citizen science by

Nordstrom et al. [13], where they found the Gulf of St. Lawrence had the highest records of jel-

lyfish (in particular C. capillata), and CPUE of jellyfish per citizen scientist. The Gulf of

St. Lawrence is described as a highly productive marine ecosystems with areas of upwelling

[38, 39]. Jellyfish are often associated with areas of upwelling and other oceanographic features

[40–42]. Phytoplankton (diatoms, dinoflagellates), zooplankton (copepods), and ichthyo-

plankton are seasonally abundant in the Gulf of St. Lawrence [43], and represent known food

sources of scyphozoan jellyfish such as C. capillata and A. aurita [43]. The hot spots of jellyfish

presence and biomass presented here are supported by previous literature that suggests jelly-

fish make up a large proportion of zooplankton biomass in the Gulf of St. Lawrence [44, 45].

Our analyses indicated that the Scotian Shelf was not statistically significant as a hot spot

for jellyfish presence and satellite-tracked leatherback turtles (Fig 3A and 3B), or a statistically

significant cold spot (Fig 3C). This is consistent with turtles moving through the Scotian Shelf

en route to other foraging areas [46]. The hot spot analysis also highlighted comparable

regional cold spots of 1) jellyfish presence, 2) jellyfish biomass, and 3) leatherback density, in

the Bay of Fundy (Fig 3). Studies of leatherback distribution in Atlantic Canadian waters also

found little to no leatherback presence in the Bay of Fundy, via volunteer sightings [9], and

aerial surveys conducted for right whales [47, 48]. The Bay of Fundy was also not identified as

important habitat for leatherback turtles based on movements of satellite-tagged leatherbacks

[9]. A recent study on jellyfish phenology in Atlantic Canada revealed very few jellyfish obser-

vations in the Bay of Fundy [13], and the trawl surveys used in this study also corroborated

these findings with only 14% of trawls having jellyfish present, and a CPUE of 0.036 kg per

trawl (Table 1). The lack of turtles in the Bay of Fundy may be attributed to an inadequate prey

field.

The hot spot analysis results for each region revealed moderate to strong correlations

between standardized jellyfish biomass and leatherback binned density. Previous studies have

suggested that leatherback migrations to and from Atlantic Canadian waters are driven by

prey availability [3, 9, 14, 37, 49, 50], but this is the first time spatial distribution of predator

and prey have been examined together. The leatherback hot spots were determined using

binned density, or the number of days a leatherback was present in the 0.5 x 0.5 degree cell.

Our results support the general behavioral ecology theory that predators will aggregate, and

spend more time in areas of high prey density [51, 52]. The fidelity leatherback turtles show to

foraging areas, and the amount of time spent in those regions indicate that turtles may be

spending longer periods of time in areas of high jellyfish density [52–54]. A comparable study

in the Irish Sea found that over a quarter of the variance in sighted leatherbacks (from citizen

science) over a period of>50 years could be explained by coastal jellyfish hot spots [55]. This

study shows, for the first time, overlapping areas of both high jellyfish and leatherback density

in this important foraging area.

Both stages of two stage gamma modelling suggested that SST, year, longitude and the SST:

year interaction were statistically significant predictors of jellyfish in the groundfish surveys

(presence and biomass). SST had a positive influence on both jellyfish presence and biomass,

suggesting that as temperature increases, so does the probability of jellyfish presence in a trawl,
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and of higher biomass. These findings are consistent with the hypothesis that increases in tem-

perature will benefit many jellyfish species [23, 56]. Temperate scyphozoan jellyfish have a

biphasic life cycle [57, 58]. After settling on the substrate, planula larva develop into sessile

benthic polyps, which reproduce asexually, releasing free-swimming ephyrae. Ephyrae mature

into pelagic medusae (the stage often referred to as a ‘jellyfish’), which reproduce sexually [57,

59, 60]. Release of ephyrae is often dictated by a specific thermal range [16, 23, 60–63], includ-

ing C. capillata and A. aurita. Growth rates of ephyrae and medusae are also hypothesized to

be influenced by temperature [14, 37].

Considering that the NW Atlantic is warming, and projected to keep warming at a faster

rate than other ocean basins [24–26], we need to better understand how these changes will

influence regional food-webs. Sherrill-Mix et al. [14] suggested that higher water temperatures

may lead to increases in jellyfish growth and sexual maturity, ultimately accelerating the scy-

phozoan life cycle, resulting in earlier senescence. This could alter timing and duration of for-

aging opportunities available to leatherback sea turtles, such that there would be an earlier

jellyfish signal, resulting in lower foraging opportunities later in the season [14] and, because

of the sheer magnitude of the northward migration and constraints breeding and other life

processes place on turtle departure times from low latitudes, an inability for some turtles to

synchronize their arrival in Canadian waters with optimal resource availability. This idea is

especially important to consider in Atlantic Canadian waters where one of the most common

jellyfish species is C. capillata [13]. The average temperature in which deterioration of C. capil-
lata medusae starts to occur is 19.1 ± 2.3˚C (16.7˚C to 23.3˚C) in Connecticut waters [18].

Nordstrom et al. [13] found an increased probability of detecting C. capillata strandings

(washed up on beaches) when SST reached 18˚C along coastal Atlantic Canadian regions. SST

reach values between 15 and 20˚C in August in the Gulf of St. Lawrence [64], likely leading to

widespread senescence of C. capillata medusae [13].

Another possible outcome of warming waters, is that geographical distributions of certain

species may expand or contract [65, 66]. It is uncertain how C. capillata, a cold water jellyfish

species, will be impacted by warming waters [16, 23, 60], and it is possible that their geographi-

cal range could shift north, modifying the current distribution of leatherbacks. In the eastern

Bering Sea jellyfish populations have shifted northward in recent warming years [67]. The hot

spot analysis results over time indicated that the jellyfish distribution (represented with pres-

ence/absence data) is slightly contracting to the north (Fig 5A–5C). This hot spot is mostly

contained within the Gulf of St. Lawrence, and 26% of the jellyfish in Gulf of St. Lawrence

groundfish surveys were identified as C. capillata. Recent years have seen warmer than usual

annual water temperatures in the Atlantic Canadian waters, including 2014, 2015, 2016 [64,

68, 69]. We examined SST changes over the months in which groundfish surveys occurred

(July, August and September). Within the Gulf of St. Lawrence, we did see a small increase in

SST over the three month period per year (0.01˚C), along with an increase in average jellyfish

latitude observation (0.06 degree North). While the correlation between the two was not signif-

icant (most likely due to a small sample size), a moderate association was identified. While

these results need to considered with caution, this may be indicative of a climate signal on jel-

lyfish distribution within the Gulf of St. Lawrence. Ultimately, more research on NW Atlantic

jellyfish, and perhaps specifically C. capillata, is needed to understand how changing climates

may influence distributions.

Management of the endangered leatherback sea turtle relies on regular seasonal migrations,

moving between foraging and breeding grounds. Seasonal distributions and density of migra-

tory predators typically overlap with the peak abundance of their prey, maximizing seasonal

prey availability [70, 71]. If there is a change in prey distributions, either spatially or tempo-

rally, predators will closely track these shifts [52, 72], which can become concerning if this
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brings the migratory predator into novel habitats and it becomes exposed to new anthropo-

genic and natural threats. For example, the critically endangered North Atlantic right whale

has recently experienced shifts in feeding habitat, thought to be a result of rapid warming

effects on copepods in the Gulf of Maine [29, 73]. Before this shift in habitat occurred, the

National Oceanic and Atmospheric Administration (USA) and DFO had designated critical

habitat based in their traditional feeding habitat, including the Gulf of Maine and southern

Scotian Shelf [27, 74]. Right whale sightings in traditional feeding habitats began declining in

2012, and in 2015 an aggregation of right whales was discovered in the southern Gulf of

St. Lawrence–an area outside of earlier-defined critical habitat [27–29]. This resulted in large

additional whale mortality due to their vulnerability to marine traffic and entanglement threats

in the new foraging habitat. The case of the North Atlantic right whale exemplifies how ecosys-

tems and the species interactions within them are not static, and how anticipating change in

these dynamic systems under climate change is needed. Understanding regional environmen-

tal drivers of jellyfish in Atlantic Canadian waters, and their sensitivity to projected climate

change scenarios will be critical to future conservation of the leatherback sea turtle [3].

Longitude was a significant predictor of both jellyfish presence and jellyfish biomass, sug-

gesting an increase from west to east. The hot spot over all years for jellyfish biomass (Fig 3C)

encompasses the northeast area of our study area. Sherrill-Mix et al. [14] found longitude was

a significant predictor of leatherback turtle departure from Atlantic Canadian waters, and that

turtles remained in the region longer in waters around 63.6 degrees West. Our modelling

results, and the findings of Sherrill-Mix et al. [14], may indicate that these areas provide better

foraging opportunities for leatherback sea turtles [14]. The binomial GLM (stage 1) also sug-

gested that latitude, and the regional effect for the Gulf of St. Lawrence were significant predic-

tors of jellyfish presence in the groundfish surveys. If we interpret these results with the hot

spot analysis, we do see the center of jellyfish biomass hot spots at slightly higher latitudes

within the Gulf of St. Lawrence. While latitude and longitude were included in the model, spa-

tial and temporal autocorrelation were not specifically addressed. Other factors which may

influence jellyfish movement and distribution, such as currents and frontal systems [75, 76],

were not considered here. These limitations should be considered when interpreting the effects

of longitude and latitude on the model.

While the groundfish trawl surveys are not directly targeting jellyfish, they offer a consistent

view of jellyfish occurrence in different regions across Atlantic Canadian waters. Jellyfish

bycatch data present the opportunity to develop baseline knowledge on spatial jellyfish distri-

butions in an area where no dedicated jellyfish surveys currently exist [77, 78]. The groundfish

surveys in this study occur in three different regions: Scotian Shelf (including the Bay of

Fundy), southern Gulf of St. Lawrence, and northern Gulf of St. Lawrence. While the surveys

often employ the same research vessel and sampling gear, and sampling protocols are similar

across regions, the regional surveys occur at different times. Scotian Shelf and Bay of Fundy

surveys take place in the early part of the season (July), whereas the Gulf of St. Lawrence sur-

veys occur in late summer (August and September). Potential sampling biases introduced by

the lack of concurrent trawl surveys across all regions may affect interpretation of jellyfish

catch data, and derived patterns of jellyfish distribution (e.g. southwest to northeast). There-

fore, constraints such as different timing of sampling need to be carefully considered when

combining regional datasets for spatial analysis purposes [79]. While different timing of the

regional trawls in the present study may be a limitation, the jellyfish hot spots we identify are

consistent with findings from citizen science jellyfish beach surveys [13], aerial survey observa-

tions of leatherback turtles [37] and leatherback turtle biotelemetry. For example, Nordstrom

et al. [13] found C. capillata was the most common species recorded by citizen scientists in

coastal Atlantic Canadian waters, with peak occurrence in the month of July, and spatial
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occurrence in the Gulf of St. Lawrence. This suggests that while surveys in each region do dif-

fer slightly in timing, the findings can be used to infer broad spatial patterns of jellyfish in

Atlantic Canada. Fisheries bycatch data in other countries/jurisdictions has provided insights

into spatio-temporal distributions of jellyfish as well [80–82].

Canada’s national endangered species legislation (Species at Risk Act) requires definition of

critical habitat for listed species, including characterization of the functional attributes of that

habitat. While leatherback turtle high use areas in Atlantic Canada have been described from

shipboard and aerial sightings data [9, 37] and satellite telemetry data, importantly, until now

(this study and [13]), quantification of the prey landscape in this region and its association

with leatherback distributions had not been clarified. This represented a conspicuous gap in

our understanding of this species’ biology, especially as leatherbacks migrate vast distances for

the very purpose of foraging here, with fat stores acquired by turtles over a single foraging sea-

son supporting over 50% of their annual energy requirements [3]. While availability of corre-

sponding jellyfish data (e.g. trawl survey data for the Newfoundland region were not available)

restricted the spatial context of this study to a fraction of the areas sampled by satellite-tagged

leatherback turtles in Canada, the present results indicate strong seasonal overlap in scypho-

zoan jellyfish and leatherback turtle hot spots in Atlantic Canada, and corroborate the impor-

tance of the Gulf of St. Lawrence, in particular, as an important foraging area for leatherbacks.

Seasonal foraging grounds, such as Atlantic Canada, should be of high conservation priority

for the recovery of the endangered Northwest Atlantic leatherback subpopulation, as these areas

offer reliable resources that enable turtles to acquire large energy stores in a relatively short time

period. A primary threat to leatherback turtles in Atlantic Canadian waters is incidental entan-

glement in fishing gear [14, 83, 84]. The results presented here provide information that could

be used to guide management actions for the endangered leatherback sea turtle. Protection of

critical habitat for the leatherbacks in Canada should potentially extend beyond traditional

static, or fixed area-based management, to include dynamic management approaches [3].

Dynamic management facilitates rapid responses to changes in the marine environment,

through monitoring of near real-time data (biological, oceanographic, and economic data) [4].

Changing climate is likely to impact jellyfish distributions, and corresponding leatherback turtle

foraging distributions in the temperate Northwest Atlantic. Therefore, to optimize leatherback

management activities in space and time, we need to both understand and effectively monitor

how environmental parameters influence leatherback prey distributions. This study suggests

that recording of incidental catch of jellyfish in annual fishery surveys at broadly distributed

sampling areas, and corresponding environmental data, is valuable to tracking the quality of

leatherback habitat over time. We urge that these methods be expanded and combined with

additional approaches to monitor and predict the distribution of important leatherback forag-

ing habitat, and to mitigate anthropogenic threats to leatherbacks in these areas.

Supporting information

S1 Fig. Sampling effort in the study area for each time period (2006–2009, 2010–2013, and

2014–2017). A) total number of trawls in each 0.5 x 0.5 degree cell; B) jellyfish biomass (kg) in

each 0.5 x 0.5 degree cell; C) catch per unit effort (CPUE) of jellyfish biomass (kg/tow) per 0.5

x 0.5 degree cell; D) jellyfish presence counts (number of trawls with jellyfish present) per 0.5 x

0.5 degree cell; and E) CPUE of jellyfish presence (jellyfish presence counts divided by the

number of tows in each cell).

(TIF)

S2 Fig. Average SST and average latitude per jellyfish observation. Average SST July,

August, and September (blue line), and the average latitude per jellyfish observation (red line),
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for A) the Scotian Shelf, where r = -0.195 (B); and C) the Gulf of St. Lawrence, where r = 0.438

(D).

(TIF)

S1 Table. Spatial variations in mean SST in the study area. ‘St. Dev’ = standard deviation,

‘CI (95%)’ = confidence interval (95%). Atlantic Canada is the entire study region (Bay of

Fundy, Scotian Shelf and Gulf of St. Lawrence combined).

(TIF)

S2 Table. Two stage hurdle model comparison. Model selection shown in bold. SST = sea

surface temperature.

(TIF)
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