
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 534: 251–272, 2015
doi: 10.3354/meps11411

Published August 27

INTRODUCTION

Marine phytoplankton are a diverse group of pe -
lagic photosynthetic microbes that provide over 90%
of marine primary production (Charpy-Roubaud &
Sournia 1990). Individual cells range over 4 orders of
magnitude in size (~0.2 to 1000 µm; Fig. 1A; Sheldon

et al. 1972, Margalef 1978, Falkowski et al. 2004) and
are globally distributed. Although marine phyto-
plankton account for only 0.2% of global photo -
synthetic carbon biomass, they generate 46.2% of
the primary production (Field et al. 1998). To achieve
this, the global standing stock of phytoplankton turns
over every 2 to 6 d on average (Behrenfeld & Fal -
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ABSTRACT: There is growing evidence that average global phytoplankton concentrations have
been changing over the past century, yet published trajectories of change are highly divergent.
Here, we review and analyze 115 published phytoplankton trend estimates originating from a
wide variety of sampling instruments to explore the underlying patterns and ecological implica-
tions of phytoplankton change over the period of oceanographic measurement (1889 to 2010). We
found that published estimates of phytoplankton change were much less variable when estimated
over longer time series and consistent spatial scales and from the same sampling instruments.
Average phytoplankton concentrations tended to increase over time in near-shore waters and
over more recent time periods and declined in the open oceans and over longer time periods. Most
published evidence suggests changes in temperature and nutrient supply rates as leading causes
of these phytoplankton trends. In near-shore waters, altered coastal runoff and increased nutrient
flux from land may primarily explain widespread increases in phytoplankton there. Conversely, in
the open oceans, increasing surface temperatures are strengthening water column stratification,
reducing nutrient flux from deeper waters and negatively influencing phytoplankton. Phytoplank-
ton change is further affected by biological processes, such as changes in grazing regimes and
nutrient cycling, but these effects are less well studied at large scales. The possible ecosystem
consequences of observed phytoplankton changes include altered species composition and abun-
dance across multiple trophic levels, effects on fisheries yield, and changing patterns of export
production. We conclude that there is evidence for substantial changes in phytoplankton concen-
tration over the past century, but the magnitude of these changes remains uncertain at a global
scale; standardized long-term measurements of phytoplankton abundance over time can substan-
tially reduce this uncertainty.
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kowski 1997). Due to this rapid turnover
(Fig. 1A), phytoplankton growth often
depletes available nutrient resources.

Over a century of scientific research
has shown that marine phytoplankton
play an important role in determining
the structure and functioning of marine
ecosystems (Chavez et al. 2003, Richard-
son & Schoeman 2004) and can have
large effects on fisheries yields (Ryther
1969, Chavez et al. 2003, Ware & Thom-
son 2005, Chassot et al. 2007, 2010), bio-
geochemical cycles (Redfield 1958, Falkowski et
al. 1998), climate regulation (Charlson et al. 1987,
Murtu gudde et al. 2002), and weather patterns
(Gnanadesikan et al. 2010). Reflecting this scien-
tific interest, the proportion of peer-reviewed sci-
entific studies of marine phytoplankton has
increased markedly over time (Fig. 1B).

Despite these increased research ef forts, one of
the most fundamental questions in phytoplankton
re search remains poorly resolved: How are aver-
age marine phytoplankton biomass concentra-
tions chan ging over the long term? Answering
this seemingly simple question is complicated by
the fact that phytoplankton concentrations are
highly variable in space and time and are difficult
to distinguish from other marine microbes and
particles, making it difficult to obtain direct
measurements of their carbon biomass. As a con-
sequence, the total concentration of the light-har-
vesting pigment chlorophyll, which is present in
all phytoplankton cells, has been used as a first-
order proxy of abundance and biomass. Despite
documented variability in the phytoplankton
chlorophyll:carbon ratio (Geider 1987), chloro-
phyll continues to be the most practical and
extensively used proxy of phytoplankton carbon bio-
mass over large spatial scales (Huot et al. 2007, Hen-
son et al. 2010). This review deals with changes in
phytoplankton concentrations as measured via ocean
color and chlorophyll assessed over the era of
oceanographic measurement, 1889 to 2010, and at
regional to global scales. We did not attempt to
include the literature on phytoplankton cell counts or
species composition and make only limited infer-
ences on changes in primary production. Following
this, we review the physical and biological drivers of
long-term marine phytoplankton change. We con-
clude by summarizing some potential ecosystem con-
sequences of phytoplankton change both across eco-
systems and globally.

MATERIALS AND METHODS

Phytoplankton trends

We systematically searched scientific databases to
identify peer-reviewed studies of temporal marine
phytoplankton change. Our literature search covered
a minimum of ~22 million articles from over 16 500
peer-reviewed journals. We limited our search to
publications estimating phytoplankton change from
chlorophyll concentrations or ocean color collected
from the upper ocean at multi-year scales (>5 yr).
Studies conducted in fresh or brackish waters were
not included. We extracted 115 phytoplankton time
series and estimates of temporal phytoplankton
change from 25 publications (Table 1).

252

0

0.05

0.1

0.15

0.2 Fish (0.006)
Phytoplankton (0.004)
Mammals (0.002)
Zooplankton (0.001)
Birds (0.001)

1985 1995 2005 201020001990

104

102

100

10–2

10–4

10–10 10–8 10–6 10–4 10–2 100 102 104

D
ou

b
lin

g 
tim

e 
(d

)

Organism size (m)

Bacteria

Phytoplankton

Viruses

Protozoa
Zooplankton

Whales
Seals
Seabirds

Fish

Minutes

Hours

Days

Months

Decades

Weeks

Years
A

B

P
ro

p
or

tio
n

Year

Fig. 1. Phytoplankton in the scientific literature. (A) Dominant
space and time scales at which major groups of marine organ-
isms operate. The average size range (x-axis) is plotted as a
function of the average doubling time (y-axis) for various marine
groups. Phytoplankton are represented in green. Figure was
adapted after Murphy et al. (1988). (B) Time trends in the scaled
proportion of peer-reviewed studies reporting on major marine
species groups (1985−2010; see Supplement at www.int-
res.com/articles/suppl/m534p251_supp.pdf for details). Taxo-
nomic groups are represented as colors, with the linear rates of 

change over time reported in brackets
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To standardize measurements that were reported
in different units, we extracted the estimated total
percentage change in phytoplankton over the
 available time span as reported by the authors. In
some cases, data extraction software was used to ex -
tract and calculate these rates (www.getdata-graph-
digitizer. com). Where the time series were extracted
from the publication, we fitted linear time series
models to the observations and calculated the total
percentage change as the difference between the
average concentration at the start and end of the
 fitted time series referenced to the initial value. The
percent change was then divided by the length of the
time series to yield the standardized percent change
per year, relative to the initial phytoplankton concen-
tration. To spatially standardize the rates of change,
we binned all estimates into 5° × 5° cells. This resolu-
tion was selected because the majority of published
phytoplankton time series were estimated over spa-
tial domains equal to or greater than 5°. The extrac -
ted trends were also referenced according to the
sampling instrumentation used to ge n erate the un -
der lying time series: (1) in situ, (2) contemporary
remote sensing, (3) Secchi disk, (4) continuous plank-
ton recorder (CPR), (5) Forel- Ule, and (6) multi-
 sensor. Multi-sensor trends are those which were
generated by combining measure-
ments from 2 or more of these sam-
pling instruments.

Variability of phytoplankton trends

The direction and magnitude of
phytoplankton time trends reported
in the literature have been widely
conflicting (Venrick et al. 1987, Fal -
kowski & Wilson 1992, Antoine et al.
2005, Gregg et al. 2005, Behrenfeld et
al. 2006, Boyce et al. 2010, 2014, Wer-
nand et al. 2013). To better under-
stand the factors that may ex plain this
variability, we estimated the standard
deviation (σ) of the standardized
phytoplankton trends that were avail-
able within each 5° × 5° cell. We then
used statistical models to estimate
what combination of predictors would
best explain the variability in the
phytoplankton trend estimates (σ). To
account for the spatial dependence
between trend variances (σ) within
each 5° × 5° cell, we estimated the

trend variability as a function of several covariates
within a generalized least-squares model as:

log10[σi] = β0 + β1Predictori + εi (1)

where σi is the standard deviation of the trends in
celli, which was log transformed to ensure normality;
β0 is the model intercept; β1 is the rate of response
change as a function of the predictor in question; and
εi is the model error, specified as:

ε ~ N (0,δ) (2)

where 0 is the mean, and δ is the error covariance
matrix. To account for spatial autocorrelation, the
covariance parameters of δ were assumed to follow a
spatially dependent process, whereby the correlation
between them decreases exponentially with increas-
ing spatial separation (Cressie 1993). Using this ap -
proach, we quantitatively estimated the influence of
several predictors on the variability of phytoplankton
time trends. Predictor variables tested include the
number and type of sampling instrument, range and
variance of the spatial and temporal extent of the
trends, average time series length, average baseline
year of the trend, distance of the cell from the nearest
coast, measurement units of the trend, and ocean
basin where the trend was estimated.
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Reference Start-end year Span Instrument Driver
(yr)

Aebischer et al. 1990 1955−1987 32 CPR BU
Aksnes & Ohman 2009 1949−2007 58 Secchi BU
Antoine et al. 2005 1979−2002 23 Satellite –
Behrenfeld et al. 2006 1997−2006 9 Satellite BU
Boyce et al. 2010 1899−2008 109 Blended BU
Boyce et al. 2014 1890−2010 120 Blended BU
Chavez et al. 2011 1989−2009 20 In situ –
Falkowski & Wilson 1992 1900−1981 81 Secchi –
Frank et al. 2005 1962−2002 40 CPR TD
Goes et al. 2005 1997−2004 7 Satellite BU
Gregg & Conkright 2002 1979−2000 21 Blended –
Gregg et al. 2005 1998−2003 5 Satellite –
Head & Pepin 2010 1998−2006 8 CPR –
Karl et al. 2001 1969−1998 29 In situ BU
Saba et al. 2010 1990−2007 17 In situ B
McQuatters-Gollop et al. 2007 1948−2003 55 CPR –
McQuatters-Gollop et al. 2011 1948−2008 60 CPR –
Montes-Hugo et al. 2009 1978−2006 28 Satellite BU
Motoda et al. 1987 1949−1969 20 In situ B
Raitsos et al. 2005 1948−2002 54 CPR –
Shiomoto et al. 1997 1985−1994 9 In situ TD
Sugimoto & Tadokoro 1997 1972–1973 21 In situ B
Suikkanen et al. 2007 1979−2003 24 In situ BU
Venrick et al. 1987 1968−1985 17 In situ BU
Wernand et al. 2013 1889−1999 110 Forel-Ule –

Table 1. Published phytoplankton time series reviewed here. CPR: continuous
plankton recorder; BU: bottom-up; TD: top-down; B: both; – : not investigated
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Average phytoplankton trends

Based on the results of the analysis of trend vari-
ance in the previous paragraph (Eqs. 1 & 2), we
calculated the mean rate of phytoplankton change
from the extracted trend estimates for each indi-
vidual 5° × 5° cell while minimizing the major fac-
tors influencing trend variation (see ‘Results’ for
details). As an additional sensitivity check, we cal-
culated mean rates of phytoplankton change
weighted by the length of the time series used to
generate the trend (years), but this did not influ-
ence the results.

Patterns of phytoplankton change

To explore patterns of similarity and dissimilarity
among the phytoplankton trends, we identified re -
ported trends which were coincident in space and
time. Published estimates where the proportion of
spatial and temporal overlap of the trends was
greater than 50% were identified as coincident. We
then looked for patterns within these coincident
trends concerning the degree of agreement in the
direction and magnitude of the time trends.

RESULTS AND DISCUSSION

Summary of phytoplankton trends

The majority of the extracted phytoplankton
trends spanned less than 23 yr, were initiated after
1978, and extended over areas less than 73 × 105 km2

(approximately half the size of the Arctic Ocean;
Fig. 2A). The majority of the trends were estimated
from time series derived from in situ (36%), satellite
remote sensing (32%), or multiple (31%; Fig 2A,
inset) sampling instruments. The remaining trends
were inferred from time series of water column
transparency measurements using the standardized
 Secchi disk (15%; Secchi 1886), CPR (13%), or
semi-quantitative assessments of ocean color using
the Forel-Ule color scale (3%; Forel 1890). The
extracted trend estimates were globally distributed,
but their availability was greatest in the Northern
Hemisphere and closer to the coasts, and they were
sparsely distributed at high latitudes and in the
Southern Hemisphere (Fig. 2B). The estimates of
phytoplankton change were observed to be larger
and more variable over shorter time intervals
(Fig. 2C).

Variability of phytoplankton trends

The variability between estimated phytoplankton
time trends within each 5° × 5° cell was found to dif-
fer spatially (Fig. 3A) and was well predicted by both
intrinsic and extrinsic factors (Table 2). Phytoplank-
ton trend variability was best predicted by the ocean
basin where the trend was recorded (r2 = 0.66; p <
0.0001), trend variability being highest in the North
Indian and North Atlantic Oceans and lowest in the
Arctic and Southern Oceans (Fig. 3B). Phytoplankton
trends also become progressively more variable
when more sampling instruments were used (r2 = 0.6;
p < 0.0001), when estimated over shorter (i.e. less
than ~55 yr; r2 = 0.51; p < 0.0001) and more recent
(i.e. after ~1975; r2 = 0.48; p < 0.0001) time periods,
and when the trends were estimated over different
spatial extents (r2 = 0.25; p < 0.0001; Fig. 3C–E). The
type of sampling instrument used was also a signifi-
cant predictor in some cases. Trend variability within
a cell (σ) was significantly increased by the addition
of trends derived from remote sensing (r2 = 0.62; p <
0.0001) or Forel-Ule (r2 = 0.24; p < 0.0001) observa-
tions. Since trends derived from multiple sampling
instruments were available in all 5° × 5° cells globally,
it was not possible to explore what effect including or
removing these trends would have on the trend vari-
ance in a given cell. However, separating trends into
those which were estimated from single instruments
and those which used multiple instruments sugges -
ted that trends estimated by combining measure-
ments from multiple instruments were typically less
variable than those estimated from single instru-
ments (Fig. S1 in the Supplement at www.int-res.
com/ articles/ suppl/ m534p251_supp.pdf). This pat-
tern may partly be driven by the generally longer
time series length of trends estimated from combined
data sources.

Average phytoplankton trends

We calculated average rates of phytoplankton
change within each 5° × 5° cell using extracted trend
estimates which were approximately coincident in
time and estimated with the same sampling in -
struments. Following the se guidelines, we calculated
 average time trends in phytoplankton over 4 inter-
vals: 

(1) Oceanographic era: 1890− 1920 to 1980−2010,
derived from direct measurements of ocean color,
Secchi depth, and in situ chlorophyll concentrations
(4 studies; 3 instruments). 
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(2) Early satellite era: 1975 to 2000−2010,
derived using remote sensing measure-
ments (3 studies; 2 instruments); 

(3) Contemporary satellite era: 1995− 2005
to 2005−2010, derived using remote sensing
measurements (3 studies; 1 instrument); 

(4) CPR era: 1945−1955 to 1990−2010,
derived using CPR measurements (4 stud-
ies; 1 instrument).

Although 36% of all extracted trends
were derived from in situ sampling instru-
ments, most of these could not be incorpo-
rated into our analysis, as they tended to be
available over time periods which did not
coincide with any other studies. Further, the
average rates of change over the oceano-
graphic era were derived from 4 studies

which were similar in the spatio-tempo-
ral extent but estimated time trends
using 3 different sampling instruments.

Long-term rates of change suggested
declining trends over much of the
ocean, except for the North Atlantic,
where large increases were driven by
possibly unrealistic estimates (6.7%
yr−1) derived from semi-quantitative
Forel-Ule ocean color measurements
(Wernand et al. 2013; Fig. 4A). Most
estimates over this period suggested
declining trends across the North and
equatorial Pacific oceans. This con-
trasts greatly with satellite-derived
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Fig. 2. Phytoplankton time series data. (A)
Standardized number of phytoplankton
trend estimates as a function of trend length
and areal extent. Colours denote the num-
ber of phytoplankton trend estimates. Histo-
grams in the outer margins depict the fre-
quency distribution of the trends as a
function of trend length and areal extent.
Inset depicts the number of phytoplankton
time trends estimated using measurements
collected from different sampling instru-
ments. (B) Spatial distribution of all phyto-
plankton trend estimates. Colors depict the
number of trends per 5° × 5° cell. (C) Stan-
dardized rate of phytoplankton change over
time as a function of trend length. Long-
term trends that transcend scales of natural
variability (35 yr; Henson et al. 2010,
Beaulieu et al. 2013) are shown as squares;
all others are shown as triangles. Colors
identify the source publication. The horizon-
tal dashed line denotes no change. CPR: 

continuous plankton recorder

A

B

Trend length (years)

P
hy

to
p

la
nk

to
n 

ch
an

ge
 (%

 y
r-

1 )

C

−80˚

−40˚

0˚

40˚

80˚

1 2

0 20 40 60 80 100 120

3 4 5 6 7 8 9

−10

0

10

20

30

40

Aksnes & Ohman 2009
Boyce et al. 2010
Boyce et al. 2014
Falkowski & Wilson 1992
Frank et al. 2005
Mcquatters-Gollop et al. 2007
Mcquatters-Gollop et al. 2011
Raitsos et al. 2005
Wernand et al. 2013

Aebischer et al. 1990
Antoine et al. 2005
Chavez et al. 2011
Goes et al. 2005
Gregg & Conkright 2002
Gregg et al. 2005
Head et al. 2010
Karl et al. 2001
Lomas et al. 2010
Montez-Hugo et al. 2009
Motoda et al. 1987
Shiomoto et al. 1997
Sugimoto & Tadokoro 1998
Suikkanen et al. 2007
Venrick et al. 1987

Number of trends

La
tit

ud
e

1
2
3
4
5
6
7
8
9
10
11

20 60 80 100 12040

0

500

1000

1500

2000

2500

3000

3500

A
re

al
 e

xt
en

t 
(k

m
s 

x 
10

0
00

0)

Trend length (years)

Forel−Ule

CPR

Secchi

Remote sensing

In situ

Number of trend estimates
0 10 20 30 40 50 60



Mar Ecol Prog Ser 534: 251–272, 2015

estimates since the late 1970s, suggestive of large-
scale phyto plank ton increases, except in the South-
ern Ocean (Fig. 4B). Again, these trends were largely
driven by one study, which reported coherent in -
creases in phyto plankton biomass since 1979
(Antoine et al. 2005). Satellite estimates since 1997

suggest spatially variable rates of change, with
declines in open ocean regions and increases in near-
shore areas (Fig. 4C). Estimates derived from CPR
measurements indicate large increases across the
temperate North Atlantic Ocean (35 to 65°N) since
~1955 (Fig. 4D).
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Fig. 3. Phytoplankton trend variability. (A) Standard deviation between extracted trends within each 5° × 5° cell. Colors depict
the log10-transformed standard deviation calculated within each cell using all available phytoplankton trend estimates and
spatial interpolation. (B−E) Strong univariate predictors of phytoplankton trend variability across all 5° × 5° cells. (B) Ocean
basin where the trend was reported, (C) number of sampling instruments present in the cell, (D) average length of time
spanned by all trends in a cell, and (E) differences (range) between the spatial extent of trends in a cell. For (B−E), colours
depict the density of the points, where blue represents few and red represents many points per pixel. Yellow points (B,C) and
trend lines (D,E) are generalized least squares model-predicted phytoplankton trend variability values (standard deviation).
Vertical lines (B,C) or shaded regions (D,E) are the 95% confidence limits about the model estimates. Broken lines in (D) and 

(E) are estimates from generalized additive models (GAMs). All relationships are statistically significant (p < 0.0001)
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Predictor Effect r2 AIC

Ocean basin Ocean basin where trend was estimated 0.66 −1231
Data: remote sensing Inclusion of remote sensing-derived trends 0.62 −1645
Sampling instrument Number of sampling instruments used to derive estimates in the cell 0.60 −1314
Time series span Average trend length within cell 0.51 −1431
Trend start year Minimum baseline year of all trends 0.48 −1389
Spatial range Difference between spatial coverage of trends in cell 0.25 −750
Data: Forel-Ule Inclusion of CPR-derived trends 0.24 −588
Spatial variability Variability between spatial coverage of trends in cell 0.22 −677
Data: CPR Inclusion of CPR-derived trends 0.08 −369
Units Number of trend response units in cell 0.05 −353
Data: in situ Inclusion of in situ-derived trends 0.02 −342
Data: Secchi Inclusion of Secchi-derived trends 0.02 −322
Distance Distance of cell from the coastline 0.01 −321

Table 2. Summary of univariate generalized least-squares model estimation of the factors influencing phytoplankton time
trend variability. Akaike’s information criterion (AIC) indicated the information-theoretic quality of the selected model; lower 

values denote higher quality. CPR: continuous plankton recorder
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Patterns of phytoplankton change

Although the average phytoplankton trends were
generally variable (Fig. 4), examining only those re -
ported trends which were coincident in space and
time enabled us to identify instances where the
direction and magnitude of change were in agree-
ment. Long-term phytoplankton trends in the North
and equatorial Pacific Oceans all indicated declining
trends (Fig. 5A). Phytoplankton trends in the North
and equatorial Pacific Oceans were estimated from
measurements of Secchi depth, water colour, or in
situ chlorophyll between ~1911 and ~2003 and sug-
gested that phytoplankton had declined at rates of
between −0.48 (Wernand et al. 2013) and −0.05%
yr−1 (Boyce et al. 2014). Three phytoplankton trends
in the Northeast Atlantic Ocean also showed good

agreement and suggested an increase between
~1918 and ~2009 at a rate of change between 0.5
(Raitsos et al. 2005) and 2.4% yr−1 (McQuatters-
 Gollop et al. 2011). Long-term trends in the Arctic
and Southern Oceans also agreed, but this is perhaps
unsurprising, since they were estimated using similar
data sources and methods (Boyce et al. 2010, 2014).

Phytoplankton trends in the North Atlantic Ocean
appeared to be particularly variable, and both long-
and short-term phytoplankton trends there dis-
agreed widely in terms of sign and magnitude of
change (Fig. 5). While limited data availability may
contribute variability and disagreement among
trends in the Indian, South Atlantic, and South
Pacific Oceans, this is not the case in the North Atlan -
tic (Boyce et al. 2012). To some extent, the high trend
variability there is driven by unrealistic rates of
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Fig. 5. Patterns in the di -
rec tion of space- and time-
coincident phytoplankton
trends. Coincident rates 
of phytoplankton change
over (A) long (>40 yr time
series span) and (B) short
(<40 yr time series span)
periods. Points depict the
study from which each
trend was obtained. Geo-
graphic location and aver-
age time series start and
end points are given on
the y-axis. Numbers in 
the right margin are the
 number of coincident esti-
mates. The dashed vertical
line denotes 0 change; the
horizontal line delineates
trends which agree or dis-
agree in their reported
direction of change. Eq.: 

Equatorial



Boyce & Worm: Marine phytoplankton change

change (6.7% yr−1) estimated from semi-quantitative
ocean color measurements (Wernand et al. 2013).
However, even after removing this outlier, variability
in the North Atlantic Ocean remained high. Interest-
ingly, similar vari abil ity has been predicted for future
estimates of phytoplankton change derived from
ocean circulation models, which are also highly di -
vergent in the North Atlantic Ocean (Henson et al.
2010). As the North Atlantic is subject to strong vari-
ability on seasonal, decadal, and multi-decadal time
scales (Martinez et al. 2009, Boyce et al. 2010), it is
likely that high natural variability masks smaller
inter-annual changes that are occurring (Henson et
al. 2010).

Again, we observed that coincident trends avail-
able over shorter time periods tended to be more
variable and less similar in the direction of change
(Fig. 5B). This likely reflects quasi-periodic climate
variability, which may strongly influence shorter-
term (less than ~27 to ~40 yr) trends (Behrenfeld et al.
2006, Martinez et al. 2009, Boyce et al. 2010, Henson
et al. 2010, Chavez et al. 2011, Beaulieu et al. 2013).
As such, some of the trends reported here, particu-
larly those estimated from contemporary remote
sensing estimates of ocean color (Fig. 4B,C), may re -
flect climate-driven variability rather than sustained
long-term changes. Phytoplankton trend estimates
were observed to switch from negative to positive
through time and with proximity to the nearest coast-
line (Fig. S2 in the Supplement), similar to the find-
ings of other long-term studies (Boyce et al. 2010,

2014). Phytoplankton declines in the open oceans
have also been observed previously (Gregg &
Conkright 2002, McClain & Signorini 2004, Polovina
et al. 2008) and are predicted to continue into the
future (Polovina et al. 2011). Increases in nearshore
waters are well documented in many regions and are
likely related to increasing coastal eutrophication
there (see ‘Environmental conditioning’ for further
details).

Phytoplankton trends in the 21st century

Similar to our results from observational measure-
ments, predicted patterns of future phytoplankton
change from process-based ocean models are vari-
able (Table 3). Despite this variability, 15 of 18 stud-
ies (83%) predict a global phytoplankton decline
over the next century. Most predictions suggested
phytoplankton increases at high latitudes and de -
clines at low and middle latitudes (Schmittner et al.
2008, Henson et al. 2010, Steinacher et al. 2010, Hof-
mann et al. 2011, Mora et al. 2013). Some of the
largest and most variable declines are predicted to
occur in the North Atlantic Ocean (Henson et al.
2010, Steinacher et al. 2010, Mora et al. 2013), where
published empirical estimates are also highly vari-
able. This suggests that temporal phytoplankton dy -
na mics in the North Atlantic are particularly difficult
to constrain from both empirical estimates (Boyce et
al. 2014) and process-based models (Table 3).
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Reference                                       Simulation         Span (yr)        Response           Change               Unit                   Forcing
                                                     range (yr AD)                                                                                                                      

Hofmann et al. 2011                      2000−2200              200                  Chl                   −50                     %                       CO2

Schmittner et al. 2008                   2000−4000             2000                 Chl                    +5                     %                       CO2

Henson et al. 2010                         2001−2100               99                   Chl                −0.0002         mg m−3 yr−1            Temperature
Boyd & Doney 2002                       2000−2080               80                   Chl                   −8.5                    %                       CO2

Beaulieu et al. 2013                       2001−2100               99                   Chl            −1.53 × 10–4      mg m−3 yr−1                       CO2

Olonscheck et al. 2013                  2000−2100              100                  Chl                   −50                     %                       CO2

Mora et al. 2013                             2014−2100               86                    C                      −4                      %                       CO2

Mora et al. 2013                             2014−2100               86                    C                     −10                     %                       CO2

Henson et al. 2010                         2001−2100               99                    PP                  −0.15       mg C m−2 d–1/yr    Temperature
Sarmiento et al. 2004                    2040−2060               20                    PP                   +4.4                    %                Temperature
Taucher & Oschlies 2011              2000−2100              100                   PP                   −5.3                    %                Temperature
Bopp et al. 2001                             2000−2080               80                    PP                   −8.9                    %                       CO2

Bopp et al. 2001                             2000−2080               80                    PP                   −8.5                    %                       CO2

Boyd & Doney 2002                       2060−2070               10                    PP                   −5.5                    %                       CO2

Steinacher et al. 2010                   1860−2099              239                   PP                    −11                     %                       CO2

Schmittner et al. 2008                   2000−4000             2000                  PP                   +100                    %                       CO2

Cermeño et al. 2008                      2000−2100              100                   PP                    −14                     %                       CO2

Cox et al. 2000                               2000−2100              100                   PP                     −5                      %                       CO2

Table 3. Published projections of future changes in phytoplankton chlorophyll (Chl), carbon biomass (C), or primary produc-
tion (PP). CO2: carbon dioxide
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Drivers of phytoplankton change

To the first order, phytoplankton cell growth is de -
termined by the availability of sunlight and macro -
nutrients (bottom-up processes) as well as grazing,
viral infection, auto-catalyzed programmed cell death
(PCD; Agusti et al. 1998, Bidle & Falkowski 2004),
pathogenic bacteria, and fungi (top-down processes).
Based on this, we discuss drivers of plankton change
in the context of changes in (1) physical forcing and
(2) biological forcing, which may alter the strength of
bottom-up and top-down processes on marine phyto-
plankton.

Physical forcing

Particularly in the open oceans, which account for
90% of the ocean surface, studies have observed
phytoplankton growth and productivity to be strong -
ly driven by physical processes, such as mixing and
upwelling, which control nutrient flux (Oschlies &
Garcon 1998, McGillicuddy et al. 2007). Passive dif-
fusion across the thermocline (Chavez & Toggweiler
1995), biological nitrogen fixation (Capone et al.
1997), and the atmospheric deposition of iron are also
of regional importance (Behrenfeld et al. 1996).
Hence, it is likely that the observed chlorophyll de -
clines in open ocean regions (Figs. 4C & 5) are driven
by factors affecting these processes. Primary among
these is increasing sea surface temperature, which
generally leads to reduced mixing depth, enhanced
stratification, and reduced nutrient flux from deeper
waters. Studies using observational measurements
have reported strong temperature-driven stratifica-
tion (TDS) effects on phytoplankton concentration at
seasonal (Lozier et al. 2011), inter-annual (Behren-
feld et al. 2006), multi-decadal (Martinez et al. 2009),
and geological time scales (Romero et al. 2011, Ver-
meij 2011). Analyses of satellite observations suggest
that TDS may also be leading to an expansion of the
low-chlorophyll gyres of the open oceans (McClain &
Signorini 2004, Polovina et al. 2008); bio-physical
models also predict this expansion to continue over
the coming century (Polovina et al. 2011). Studies
using empirical observations (Behrenfeld et al. 2006,
Boyce et al. 2010, Boyce 2013) and process-based
models (Henson et al. 2010) have provided strong
empirical evidence that TDS effects on phytoplank-
ton also vary by latitude, with strong negative effects
at low and middle latitudes but positive effects at
high latitudes. This pattern of change is partly at
odds with observations, which suggest declining

trends at high latitudes (>70°N or S; Fig. 4A,B). In
well-mixed high-latitude oceans, increasing TDS
may positively influence phytoplankton growth by
retaining phytoplankton cells above the critical
depth (Sverdrup 1953, Jacobs et al. 2002, Montes-
Hugo et al. 2009, Arrigo et al. 2012) or by modifying
phytoplankton−grazer interactions (Behrenfeld 2010).
Process-based models also predict that over the com-
ing century, rising temperatures may lead to reduced
ice cover and increased light availability; combined
with a longer growing season, this may lead to in -
creased phytoplankton biomass and productivity at
high latitudes (Schmittner et al. 2008, Henson et al.
2010, Steinacher et al. 2010, Mora et al. 2013). Large-
scale phytoplankton trend estimates are generally
less available at these high latitudes (Fig. 2B), likely
contributing to the variability of the empirical esti-
mates of change there.

Experimental, field, and modeling studies suggest
that TDS may also lead to declines in the concentra-
tion of larger phytoplankton species such as diatoms
and increases in smaller species such as small flagel-
lates and cyanobacteria (Li et al. 2009, Morán et al.
2010, Barnes et al. 2011, Boyce et al. 2015a). These
effects may be related to different nutrient uptake
strategies between large and small phytoplankton
species (Bopp et al. 2005, Cermeño et al. 2008, Li et
al. 2009), the temperature-size rule (Atkinson 1994,
Atkinson et al. 2003, Morán et al. 2010), or increased
sinking rates of larger phytoplankton species (Ro drí -
guez et al. 2001).

Changes in a range of additional physical variables
such as wind intensity or salinity may modify the in -
fluence of temperature on stratification and nutrient
flux in some locations. For instance, observations of
changing wind intensity over the past century will
have large effects on upwelling intensity, including
highly productive Eastern Boundary Current systems
(Bakun 1990, Vecchi et al. 2006). In the Indian
Ocean, warming of the Eurasian land mass has been
linked to intensifying monsoon winds and upwelling,
leading to reported phytoplankton increases of 300 to
350% (Goes et al. 2005; Fig. 4B,C; Table 1). Wind-
driven atmospheric deposition of iron is of regional
importance to phytoplankton growth (Behrenfeld et
al. 1996). In polar oceans, melting sea ice has been
linked to increased upper-ocean irradiance and re -
duced surface salinity, which may have stronger
effects on phytoplankton than TDS (Lee et al. 2012,
Post et al. 2013). Increasing ocean acidification may
also alter phytoplankton community structure, bene-
fiting smaller species and possibly hindering calci -
fying ones (Orr et al. 2005, Iglesias-Rodríguez et al.
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2008, Beaufort et al. 2011, Riebesell et al. 2013).
Acidification-driven reductions in the bioavailability
of iron could also lead to phytoplankton declines in
expansive high-nutrient, low-chlorophyll regions of
the ocean (Shi et al. 2010).

Biological forcing

Trophic control. Consumers may drive changes in
phytoplankton biomass and species composition
through their trophic (feeding) behaviour. These ef -
fects may be caused by modified grazing pressure
(direct) or by changes to other consumers which
may propagate across multiple trophic links, ulti-
mately modifying grazing pressure (indirect). For
instance, the removal of a top predator from the
Northwest Atlantic ecosystem led to cascading
trophic effects which may have contributed to a
long-term (~40 yr) increase in phytoplankton there
(Frank et al. 2005, 2011). Such trophic cascades
have been observed across diverse ecosystems but
often weaken at the plankton level (McQueen et al.
1986, Micheli 1999, Shurin et al. 2002, Baum &
Worm 2009, Boyce et al. 2015b). While it is unclear
what factors determine the occurrence and strength
of such cascades, the intensity of fisheries exploita-
tion is likely a contributing factor (Frank et al. 2005,
2006, Myers et al. 2007, Baum & Worm 2009). It is
also possible that short food chains with fewer
trophic transfers between predators and producers
may be more susceptible to cascading effects, with
reduced diversity and lower functional redundancy
rendering the systems generally less stable (Frank
et al. 2006, Worm et al. 2006, Casini et al. 2008).
Grazing pressure (Loeb et al. 1997, Sommer et al.
2007), heterotrophic bacterial activity (Llewellyn et
al. 2008), and viral infection (Suttle 1994) can all be
influential in controlling phytoplankton concentra-
tions. Experimental and modeling studies also show
that ocean warming in duces a more rapid metabolic
response in heterotrophs as compared to autotrophs,
which leads to increased grazer control and reduced
standing biomass of phytoplankton (O’Connor et al.
2009, Lewan dowska et al. 2014), although this effect
also appears to be context-specific (Lewandowska
et al. 2014).

Environmental conditioning. Marine organisms
mo di fy their environment through a range of non-
trophic activities, thereby promoting or inhibiting
phytoplankton growth in a process termed environ-
mental conditioning (Smetacek 2008). For instance,
whales and seals forage at depth and excrete fecal

plumes in surface waters. In this manner, essential
macronutrients such as nitrogen and iron are trans-
ported from deeper to surface waters, promoting
phyto plankton growth. Changes in this so-called
whale pump have been suggested as a possible dri -
ver of phytoplankton change in some regions (Sme -
ta cek 2008, Lavery et al. 2010, 2014, Roman &
McCarthy 2010). Particularly, long-term reductions
in whale biomass in the Northwest Atlantic (Roman &
Palumbi 2003) and Southern (Smetacek 2008)
Oceans may have led to reduced efficiency of the
whale pump and could contribute to observed long-
term phytoplankton declines there (Boyce et al. 2010,
2014).

The activities of biological organisms may also in -
fluence phytoplankton through their effects on ocean
mixing (Munk 1966). Kinetic energy generated by
swimming organisms could account for 33% of
global ocean mixing; this is comparable to wind- or
tidal-driven mixing (Dewar et al. 2006). Observa-
tional studies have also reported that the swimming
activities of krill may induce 4 orders of magnitude
increases in turbulence in nearshore waters (Kunze
et al. 2006). Given the global distribution and large
biomass of vertically migrating marine organisms
(Gjosaeter & Kawaguchi 1980, Irigoien et al. 2014),
biologically generated turbulence may have larger
impacts on the global flux of nutrients to phytoplank-
ton in surface waters than previously recognized.
The harvesting of large-bodied consumers (Estes et
al. 2011) may have disproportionately reduced nutri-
ent cycling and physical mixing, with possible effects
on phytoplankton (Behrenfeld et al. 2006, Polovina et
al. 2008, Boyce et al. 2010). This mechanism could
have contributed to part of the observed phytoplank-
ton declines in the open oceans (Fig. S2 in the Sup-
plement), where vertical mixing is a particularly
strong driver of phytoplankton change.

By accounting for 20% of all marine microorganism
mortality, viruses may have large effects on nutrient
fluxes in the oceans, with consequences for phyto-
plankton (Suttle 2007). Viruses negatively influence
phytoplankton directly via cell lysis, or their presence
may trigger phytoplankton PCD, likely as an anti-
viral defence mechanism (Bidle & Falkowski 2004).
Viruses may also infect consumers ranging from bac-
teria to whales, thereby increasing the amount of dis-
solved and particulate organic matter available for
phytoplankton growth (Suttle 2007).

The activities of humans provide perhaps the clear-
est examples of environmental conditioning. Some
examples concern strong effects on coastal nutrient
inputs stemming from soil erosion, agricultural prac-
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tises, and industrial activities. For instance, anthro-
pogenic activity has led to global increases in the
river-borne deposition of nitrate and phosphate to
nearshore waters by up to 300% (Duce et al. 1991) or
more in some regions (Howarth et al. 1996), while
atmospheric deposition of nitrate has increased by up
to 50% in some regions (Brimblecombe & Pitman
1980). Such large-scale environmental conditioning
by humans in nearshore oceans is almost certainly
contributing to the large phytoplankton increases ob -
served there (Figs. 4 & 5).

Synergistic and context-dependent forcing

Individual physical and biological drivers of phyto-
plankton change might reinforce or counteract each
other. For instance, ocean warming generally in -
creases phytoplankton growth rates (Sarmiento et al.
2004) and microbial metabolism (Taucher & Oschlies
2011), which could counteract negative TDS effects
on phytoplankton. However, the metabolic theory of
ecology (MTE; Brown et al. 2004) and experimental
results (Sommer & Lengfellner 2008, O’Connor et al.
2009) suggest that rising temperature increases
grazer metabolic rates faster than phytoplankton
metabolic rates, leading to reduced phytoplankton
via increased grazing pressure. Hence, it is important
to distinguish clearly between the physically me -
diated temperature effects on phytoplankton via
changes in stratification and nutrient delivery and
the biologically mediated temperature effects on
phytoplankton via altered phytoplankton and con-
sumer metabolism. One experimental study com-
pared the relative importance of these processes and
found that this varied depending on average nutrient
availability in the ecosystem (Lewandowska et al.
2014). In nutrient-limited systems, the effect of rising
temperature on nutrient delivery was dominant,
while in nutrient-replete systems, the effect of rising
temperature on grazing pressure was stronger. How-
ever, under both nutrient regimes, the net effect of
increasing temperature on phytoplankton was nega-
tive. Such context-dependent forcing has also been
revealed in a recent synthesis of published studies
which found that trophic control in marine eco -
systems scaled unimodally with temperature: strong
resource control occurred between 5 and 15°C, and
consumer control occurred at the cold and warm
extremes of this range (Boyce et al. 2015b). Such con-
text-dependent physical−biological effects on phyto-
plankton are an important frontier for further
research.

Case study 1: Global patterns of phytoplankton,
nutrients, and grazers

To quantitatively explore primary controls on
phyto plankton biomass across the seascape, we ex -
am ined spatial gradients in chlorophyll (mg m−3) in
conjunction with spatial data for nitrate concentra-
tion (µmol l–1) and total zooplankton carbon biomass
(mg m−3) at global scales (Fig. 6A–C). This approach
has been used to show the strong positive relation-
ship be tween phytoplankton and zooplankton con-
centration across the Atlantic Ocean (Irigoien et al.
2004) but to our knowledge had not yet been applied
globally. All data were extracted from publicly avail-
able sources (see Supplement at www.int-res.com/
articles/ suppl/ m534p251_supp.pdf). Based on this
simple approach, global patterns in chlorophyll
appeared similar to those of nitrate and zooplankton
(Fig. 5A−C). Elevated levels in nearshore, high-
 latitude, and up welling regions were well delin-
eated, as are the oligo trophic gyres of the major
ocean basins, where lower nitrate and phytoplankton
concentrations  prevail. Ordinary least-squares (OLS)
regressions of log-transformed mean nitrate or zoo-
plankton on phytoplankton measurements for each
1° × 1° cell statistically confirmed this relationship, a
result suggestive of bottom-up control of both phyto-
plankton and zooplankton concentrations by nitrate
(Fig. 5D,F). The relationship between nitrate and
chlorophyll was strongly positive (r = 0.51, p <
0.0001) and was best approximated by a polynomial
regression (r2 = 0.39; p < 0.0001; Fig. 6D). The non-
linearity of the relationship likely relates to the
phytoplankton re quirement for additional resources
such as phosphate, silicate, carbon, and iron but may
also be driven by a nutrient saturation. For example,
despite high available nitrate concentrations in some
re gions, phytoplankton biomass is limited by, and
responds strongly to, the addition of iron across 20 to
40% of ocean surface waters (Behrenfeld et al. 1996,
Boyd et al. 2000, Moore et al. 2009). It is therefore
possible that changes in physically or biologically
driven iron deposition may have influenced the
observed phytoplankton trends, particularly in the
Pacific, Atlantic, and Southern oceans (Fig. 4).

Ecological consequences of phytoplankton change

Consequences of phytoplankton change globally

Globally, spatial variation in phytoplankton con-
centration is strongly and positively related to varia-
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tion in zooplankton (r = 0.63; p < 0.0001) (Fig. 6E),
suggesting that phytoplankton biomass strongly
influences zooplankton via resource control (Fig.
6B,C). The well-established positive relationship
between zoo plank ton and fish for both the larval and
adult stages (Lasker 1975, Cushing 1990, Beaugrand
et al. 2003) suggests that these observed relation-
ships (Fig. 6B,C) likely propagate to higher trophic
levels. Additionally, bottom-up linkages between
phytoplankton primary production, zooplankton,
mesopelagic fishes biomass, and total fisheries land-
ings have been observed at regional scales (Ware &
Thom son 2005, Chassot et al. 2007) and globally
(Chassot et al. 2010, Irigoien et al. 2014). These cor-

relations between spatial gradients of primary and
secondary productivity do not necessarily imply cau-
sation but support the hypothesis that phytoplankton
productivity sets the carrying capacity of marine
 ecosystems through resource control (Fig. 6B,C). It
needs to be observed, however, that such variation
across ecosystems only captures order of magnitude
changes in the abundance of different trophic groups
on a log−log scale. Within individual ecosystems,
there is ample evidence for top-down effects of graz-
ers on phytoplankton that may interact with the
 bottom-up forcing discussed in the previous subsec-
tion (Verity & Smeta cek 1996, Micheli 1999, Frank et
al. 2006, Baum & Worm 2009, Estes et al. 2011).
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Fig. 6. Global climatology of phytoplankton, zooplankton, and nutrient concentrations. Averaged (A) nitrate, (B) chlorophyll,
and (C) zooplankton concentration per 1° × 1° cell depicted as colors. White represents areas with no data. (D) Chlorophyll as
a function of nitrate, and (E) zooplankton as a function of chlorophyll. All variables are log10-transformed average concentra-
tions per 1° × 1° cell. Colors depict the number of measurements per pixel. Relationship in (D) was best approximated by a poly-
nomial function, and relationship in (E) was best approximated by a quadratic function. Shading represents the 95% confi-

dence limits around the fitted curve
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In addition to the spatial approaches discus sed
above, temporal approaches have also re vea led
 resource regulation of the grazer food web by phyto-
plankton affecting such taxonomically distant organ-
isms as leatherback turtles (Saba et al. 2008), octo-
puses (Otero et al. 2008), seabirds (Frederiksen et al.
2006), and fishes (Richardson & Schoeman 2004).
Phyto plankton concentrations also influence higher
trophic levels via changes in the timing and magnitu -
de of phenological cycles (Hjort 1914, Cushing 1990).
Observational studies have demonstrated that the
amount, species composition, and timing of phyto-
plankton blooms can strongly influence the survival of
larvae and the subsequent population size of fish (Las -
ker 1975, Platt et al. 2003). Such pheno logical chan -
ges in the concentration and quality of phytoplankton
may be manifest as temporal changes in overall bio-
mass and can also affect ecosystem structure from the
bottom up (Edwards & Richardson 2004).

Apart from the effects operating within pelagic
waters, the observed changes in plankton abun-
dance may also affect deep-sea ecosystems, which
are almost entirely sustained by the rain of particu-
late organic matter (POM) from surface waters, the
majority of which is produced by phytoplankton
(Ruhl et al. 2008). The downward flux of particulate
organic carbon (POC) accounts for up to 67% of
deep-sea benthic biomass in some regions (Johnson
et al. 2007). Studies have also documented positive
relationships between spatial gradients of surface
chlorophyll, POC flux, and deep-sea macro-faunal
abundance (Johnson et al. 2007, Ruhl et al. 2008).
Phytoplankton-derived POC flux may also in fluence
inter-specific body size distributions of deep-sea
macrofauna (Ruhl et al. 2008) and diversity of deep-
sea ecosystems. There is broad consensus among
physically based models, which predict de clining
export production over the coming century to be
driven in part by rising temperature and changes in
phytoplankton biomass and community composition
(Steinacher et al. 2010). The strong dependence of
food-stressed deep-water ecosystems on export pro-
duction would likely render them particularly sensi-
tive to changes in phytoplankton concentration and
community composition.

Consequences of phytoplankton change 
across ecosystems

The evidence reviewed thus far suggests that
phytoplankton biomass and productivity place first-
order constraints on the carrying capacity of pelagic

and deep-sea ecosystems. Additional factors such as
the structure of the ecosystem, the degree to which
productivity is affected, altered phenology, and
changes in species composition and size structure
will likely further modify the ecological response to
phytoplankton biomass changes across ecosystems.

In the open ocean oligotrophic gyres, phytoplank-
ton biomass is low and comprised mainly of pico- and
nanophytoplankton (<0.2 to 20 µm diameter). Due to
the small primary producer cell size and the con-
straints of size-based predation (Barnes et al. 2010,
Wirtz 2012, 2013, Boyce et al. 2015a), primary pro-
duction in the open ocean is inefficiently channelled
to higher trophic levels through a microbial food
chain, or microbial loop, consisting of picophyto-
plankton, viruses, bacteria, and small heterotrophic
protists (Ryther 1969, Azam et al. 1983, Azam &
 Worden 2004, Azam & Malfatti 2007). The preva-
lence of the microbial loop in open ocean ecosystems
(Pomeroy et al. 2007) results in long, complex flows of
primary production from producers to grazers and
highly efficient recycling of organic matter (Ryther
1969). Ultimately, the microbial loop increases the
recycling efficiency of phytoplankton and other dis-
solved organic matter but reduces the amount of pri-
mary production available to both the grazer and
deep-sea ecosystems (Iverson 1990). This, in combi-
nation with the low phytoplankton biomass, con-
tributes to the low fishery landings per unit area and
export production of open ocean ecosystems (Ryther
1969); hence, they are sometimes referred to as bio-
logical deserts (Polovina et al. 2008).

Since the open oceans are already food stressed,
ecosystems there may be particularly sensitive to any
reductions in phytoplankton biomass. Process-based
models and field and experimental studies suggest
that continued warming will lead to increases in the
abundance of picophytoplankton (Cermeño et al.
2008, Polovina & Woodworth 2012), expansions of the
oligotrophic oceans (Polovina et al. 2008, 2011), and
increased microbial metabolism (Taucher & Oschlies
2011). Such changes may increase the relative impor-
tance and turnover rate of the microbial loop both in
the oligotrophic gyres and elsewhere, thereby in-
creasing primary production, but may re duce the
channeling of primary production to the grazer and
deep-sea food chains. These changes in the oligotro-
phic open oceans may be exacerbated by predicted
temperature-driven reductions in phytoplankton di-
versity over the coming century (Thomas et al. 2012).
Such diversity losses may alter the structure (Hooper
et al. 2012) and stability (Worm et al. 2006) of open
ocean ecosystems and may further reduce primary
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productivity in these ecosystems through the loss of
productive species (Tilman et al. 1996), reduced com-
plementarity (Reich et al. 2012), or increased grazer
pressure (Hillebrand & Cardinale 2004).

In contrast to the open oceans, nearshore eco -
systems are supported by an abundance of large
microphytoplankton species (~20 to 1000 µm in dia -
meter; Cermeño et al. 2008). These ecosystems often
have shorter food chains and are thought to be more
efficient, with fewer trophic transfers between phyto-
plankton and predators. Large blooms of rapidly
sinking diatoms, slower turnover, and sloppy grazing
by large zooplankton result in large fluxes of POC to
benthic ecosystems (Ryther 1969, Cermeño et al.
2008, Guidi et al. 2009, Chavez et al. 2011, Norris et
al. 2013). There is evidence for phytoplankton in -
creases in most nearshore waters (Fig. S2 in the Sup-
plement), likely due to human-derived nutrient input
(Jickells 1998). Increasing phytoplankton in these
nearshore systems is hypothesized to have a positive
effect on global fishery landings, ~50% of which de -
rive from nearshore and shelf systems (FAO 2010),
but may also trigger negative effects in some regions.
For instance, large phytoplankton blooms are known
to increase heterotrophic bacterial activity and can
lead to large subsurface anoxic regions known as
dead zones (Grantham et al. 2004). Such effects have
been linked with decreased secondary biomass and
fishery yield (Diaz & Rosenberg 2008), particularly in
nearshore waters. Additionally, some phytoplankton
species can form harmful algal blooms, which nega-
tively affect secondary production and fisheries
(Nixon & Pilson 1983).

Upwelling ecosystems occur in both nearshore and
oceanic waters and contain characteristics of both
systems. These ecosystems are predominantly influ-
enced by the wind-driven upwelling of nutrient-rich
waters, resulting in large blooms of microphyto-
plankton, which support large fisheries and export
large amounts of POM to the deep sea. Contrary to
nearshore systems, phytoplankton trends in up -
welling systems are mostly related by changes in up -
welling intensity as driven by changes in wind, tem-
perature, and stratification. Any increases in TDS
here would reduce total phytoplankton biomass but
may have disproportionate negative effects on larger
phytoplankton, which are outcompeted by pico -
phyto plankton under conditions of warming, stratifi-
cation, or prolonged nutrient limitation (Atkinson et
al. 2003, Cermeño et al. 2008, Li et al. 2009, Morán et
al. 2010). Since large grazers in these systems are
often incapable of consuming picophytoplankton
(Hansen et al. 1994, Sommer & Stibor 2002, Sommer

& Sommer 2006), a shift towards smaller phytoplank-
ton may decrease the transfer efficiency of primary
production through the grazer food chain (Ryther
1969, Barnes et al. 2010, Chavez et al. 2011). These
size-selective negative effects are predicted to be
strongest in the North Atlantic and tropical up -
welling systems, possibly due to the proportionally
larger contribution of microphytoplankton to phyto-
plankton standing stock (Cermeño et al. 2008).
 Studies of the relationship between phytoplankton
changes and fisheries landings confirm these obser-
vations, with the average effect of changing chloro-
phyll on fish yield being strongest in upwelling, tem-
perate, and nearshore marine ecosystems (Ware &
Thomson 2005, Chassot et al. 2007, 2010). Although
model predictions for upwelling systems are variable
and uncertain (Wang et al. 2010), many predict tem-
perature-driven future declines in phytoplankton
biomass and size (i.e. Henson et al. 2010, Steinacher
et al. 2010). Such changes are hypothesized to have
strong and negative effects on productivity.

Case study 2: Ecological effects of climate-driven
phytoplankton variability

Some of the clearest examples of the drivers and
ecological consequences of marine phytoplankton
change derive from studies of the effects of quasi-
periodic climate fluctuations, for example from the El
Nino Southern Oscillation or North Atlantic Oscilla-
tion (NAO; Barber & Chavez 1986, Chavez et al.
1999, Behrenfeld et al. 2006, Martinez et al. 2009).
Such climate fluctuations represent natural experi-
ments which can shed light on the drivers and conse-
quences of longer-term trends in phytoplankton
change.

A well-known example of the effects of climate
variability propagating up the food web comes from
the North Sea (Aebischer et al. 1990). Here, the posi-
tive correspondence between standardized long-
term (1955 to 1987) time series of westerly weather,
phytoplankton, zooplankton, herring Clupea haren-
gus abundance, and breeding success of kittiwakes
Rissa tridactyla suggests that environmental effects
on phytoplankton abundance are transmitted up the
food chain. Although the study accounted for the
influence of weather patterns, the potential effects of
periodic climate variability were not realized at the
time. The NAO is a major mode of climate variability
in the region and is negatively related to the average
concentration of phytoplankton (Boyce et al. 2010)
and zooplankton (Fromentin & Planque 1996) in the
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North Atlantic. On longer time scales, the Atlantic
Multidecadal Oscillation (AMO) may be the domi-
nant mode of climate variability (Martinez et al. 2009,
Chavez et al. 2011) and is positively related to marine
phytoplankton concentration in the region (Martinez
et al. 2009). To examine the interplay between
decadal climate fluctuations, plankton abundance,
and ecosystem structure, we extracted time series of
westerly weather, phytoplankton, zooplankton, her-
ring, and kittiwake chicks (Aebischer et al. 1990) as
well as time series for the NAO and AMO. All series
were filtered to remove any high-frequency variabil-
ity and re-scaled such that they ranged over the same
interval (see the Supplement for data sources and full
methods). Westerly weather had a low explanatory
power and was thus removed from the analysis. All
series were positively related (Fig. 7), yet the AMO
emerged as the dominant climate driver of observed
ecological change, showing a much stronger correla-
tion than the NAO or westerly weather. However, it
is unclear if the AMO alters ecosystem dynamics
directly through physical processes or indirectly by
modifying the trophic state of the environment.

To more quantitatively address this issue, we ex -
amined the linear correlation between all series. If
climate is driving consumer abundance via changes
in phytoplankton, the correlation between adjacent,
trophically coupled trophic levels should be stron -
ger than the correlation between individual trophic
levels and climate. Using this simple approach, we
ob served strong evidence of bottom-up effects
mediated by the influence of climate on phyto-

plankton (Fig. S3 in the Supplement). Climate in -
dices were the strongest predictors of phytoplank-
ton concentration. For example, the AMO shows
almost perfect positive correlation (NAO: r = −0.596;
AMO: r = 0.998; Fig. S3). Zooplankton and herring
were best predicted by the concentration of phyto-
plankton on which they graze (zooplankton: r =
0.961; herring: r = 0.781). Also, the number of kitti-
wake chicks was most strongly predic ted by their
primary food source, herring (r = 0.989). While
these correlations do not imply causation, they do
provide observational support for the hypo thesis of
climate-induced control of the eco system and sug-
gest that long-term changes in phytoplankton
could cascade up the food web, ultimately influ-
encing apex predators and humans. The strong
influence of the AMO particularly highlights the
importance of de cadal- scale temperature variation
in determining phytoplankton concentration in the
upper ocean.

SUMMARY AND OUTLOOK

Our analysis suggests that the high variability
among estimated changes in marine phytoplankton
over the past century likely relates to a larger num-
ber of local and regional factors that cannot be easily
identified in a global overview. However, when we
compiled published trend estimates from throughout
the global ocean, we tended to observe declining
phytoplankton concentrations more commonly in

studies conducted over longer time
scales and in the open oceans. Con-
versely, phytoplankton increases
were observed more frequently over
recent time periods and closer to
shore. Regionally, our analysis sug-
gests that phytoplankton concentra-
tions have de clined across the North
and equatorial Pacific Oceans and at
high latitudes and increased in the
South Indian Ocean and in the North-
east Atlantic. Estimates of change in
the North Atlantic Ocean and in the
Southern Hemisphere appeared par-
ticularly variable. Continued monitor-
ing of phytoplankton levels using
standardized methods, such as in situ,
remote sensing, Secchi disk, and
CPR, will lead to improved inter-cali-
bration and more accurate estimates
of long-term phytoplankton changes.
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While empirical estimates vary widely, most pre-
dictive models suggest that globally averaged phyto-
plankton concentrations will gradually decline over
the coming century (Table 3). Although increases are
predicted at high latitudes and in nearshore waters,
global trends will likely be dominated by phyto-
plankton declines across the low- and mid-latitude
oceans and in the open oceans, where ~82% of an -
nual global ocean primary production occurs (Ryther
1969).

Multiple lines of evidence point towards changes
in temperature as an important (but certainly not
exclusive) driver of observed phytoplankton trends,
particularly in the open oceans. Increasing tempera-
tures are predicted to induce shifts in phytoplankton
biomass concentration (Behrenfeld et al. 2006), diver-
sity (Thomas et al. 2012), phenology (D’Ortenzio et
al. 2012), species composition (Cermeño et al. 2008,
Li et al. 2009), size structure (Polovina & Woodworth
2012), and zooplankton grazing pressure (O’Connor
et al. 2009, Sommer et al. 2012, Boyce et al. 2015b).
The pathways by which temperature changes influ-
ence phytoplankton are multifarious, but TDS has
emerged as an important mechanism over geological
(Schmittner 2005), historical (Boyce et al. 2010, 2014,
Boyce 2013), contemporary (Behrenfeld et al. 2006),
and future (Henson et al. 2010, Hofmann et al. 2011,
Olonscheck et al. 2013) time horizons. Experiments
and process models further suggest that warming is
shifting the balance of autotrophic to heterotrophic
metabolism, which may exacerbate (O’Connor et al.
2009, Sommer et al. 2012, Olonscheck et al. 2013) or
counterbalance (Taucher & Oschlies 2011) any de -
clines in biomass driven by TDS.

Such changes in plankton abundance, composi-
tion, and diversity, variable as they may be, will like -
ly have effects on the wider ocean food web. For
example, progressive declines in phytoplankton bio-
mass would likely reduce the carrying capacity of
marine ecosystems if not counterbalanced by in crea -
ses in biomass-specific productivity. A robust exami-
nation of future phytoplankton change and its eco-
logical consequences will depend on better resolving
critical uncertainties, such as the influence of con-
sumers on marine phytoplankton, the net effect of
changing metabolic rates on productivity, and the
effects of size-restructured phytoplankton communi-
ties on ecosystem functioning. Further, the scarcity of
consistent, long-term measurements of consumer
abundance across trophic levels limits any rigorous
analysis of their relevance as drivers of long-term
phytoplankton change. Such challenges and limita-
tions may explain why relatively few studies have

considered the importance of top-down effects at
global scales. Further investigation may be facili-
tated by combining process-based models with ex -
perimentation and field observation and through the
formation of coordinated working groups (i.e. ICES
and Scientific Committee on Oceanic Research wor -
king groups and the International Group for Marine
Ecological Time Series) aimed at integrating, shar-
ing, and validating phytoplankton time series.
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