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Climate change is a pervasive driver of ecological change 
and biodiversity loss1,2, with adverse consequences for eco-
system health3,4, food security5–7 and human well-being8. 

Climate-smart management and conservation strategies are needed 
to ensure the effective stewardship of living resources now and 
in the future9–11. The success of these strategies requires a robust 
understanding of the differential vulnerability of species and eco-
systems to climate change11–13. While climate change vulnerability 
assessments (CCVAs) have been advocated as an essential strat-
egy11–13, existing frameworks have not found broad application in 
conservation and management contexts.

One key factor inhibiting the broader application of CCVAs has 
been the challenge of evaluating species vulnerability comprehen-
sively across three fundamental dimensions: (1) their encounter 
with hazardous climate conditions (exposure), (2) their susceptibil-
ity (sensitivity) and (3) their resilience to those conditions (adaptiv-
ity)14–17. To date, most CCVAs have analysed only one or two of these 
dimensions16, providing an incomplete picture. Moreover, many 
CCVAs are not spatially explicit but calculate a single vulnerability 
score across the species’ distributional range (exceptions include 
refs. 18–20), potentially obscuring spatial variation that is critical to 
management and conservation objectives. CCVAs often incorporate 
expert opinions rather than quantitative empirical data12,17,19, limit-
ing their reproducibility and ability to track changing vulnerability 
through time. Finally, vulnerability is almost exclusively reported 
in dimensionless units to compare and rank species’ relative vul-
nerabilities12,15–20, limiting their application because stakeholders 
often require explicit risk assessments on an absolute scale. New 
approaches that augment existing CCVAs to address this suite of 
limitations are thus needed to broaden their application; simplify 
communication among scientists, conservation managers and stake-
holders; and facilitate climate-smart management strategies9,11,12.

We address these limitations and develop an empirically rooted, 
spatially explicit framework to assess both relative climate vulner-
ability and absolute climate risk for all available marine life forms, 
and we explore the application of this framework to conservation 
planning and socio-economic development. We evaluate climate 
risk for 24,975 marine species and ecosystems globally under two 
contrasting greenhouse gas emission scenarios (SSP5-8.5 (high 
emissions) and SSP1-2.6 (high mitigation)). We conclude by explor-
ing the applied advantages of this framework for conservation and 
management by evaluating aggregate ecosystem climate risk in rela-
tion to priority conservation areas and assessing climate risk for 
exploited species within the exclusive economic zones (EEZs) of 
maritime countries and the high seas beyond national jurisdiction.

A climate index for marine life
Our analysis focuses on species that inhabit the upper 100 m of the 
water column, where climate-driven temperature changes are the 
most severe. The assessed marine species were primarily animals 
(n = 24,617 species; 98.6%) but also included plants (n = 230; 0.9%), 
chromists (n = 72; 0.3%), protozoans (n = 48; 0.2%) and bacteria 
(n = 8; <0.1%) (Extended Data Fig. 1a).

In each 1° × 1° grid cell (~111 km × 111 km at the equator) across 
each species’ native geographic distribution21 (Fig. 1a), validated 
high-resolution data sources (Supplementary Table 2) are used to 
calculate 12 climate indices (Fig. 1b and Supplementary Table 1). 
The indices comprehensively capture unique information about 
ecological responses to climate change and include, for instance, 
species’ proximity to current22 and projected future23 hazardous cli-
mate conditions, intrinsic resilience to perturbations24, responses to 
synergistic impacts3 and climate-driven ecosystem disruption1. The 
indices are then used to calculate species’ climate vulnerability and 
risk according to three dimensions: the present-day sensitivity to 
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climate change, projected future exposure and innate potential to 
adapt (Fig. 1c). Climate vulnerability is evaluated on a relative scale 
from 0 to 1, with vulnerability = 1 typically corresponding to a spe-
cies and location where sensitivity and exposure indices are at their 
extreme highest and adaptivity is at its lowest (Fig. 1d). Climate 
vulnerability scores are converted to an absolute risk scale ranging 
from negligible (lowest) to critical (highest) (Fig. 1e) using eco-
logical thresholds (Supplementary Table 4). This absolute risk score 
captures both the likelihood and the magnitude of adverse conse-
quences25 for species at the individual locations across their distribu-
tions and the aggregate ecosystems they compose. This translation 
of relative vulnerability into absolute risk using thresholds is analo-
gous to the IPCC reasons for concern framework that assesses cli-
mate risk to humans14,26 and the widely adopted International Union 
for the Conservation of Nature (IUCN) Red List Index of extinc-
tion risk for species27. However, whereas the Red List Index assesses 
extinction risk at the species level and is identical across species’ dis-
tributions, the climate risk index for biodiversity (CRIB) presented 
here disaggregates climate risk and its spatial variation across the 
sites throughout a species’ distribution and evaluates risk for both 
individual species and aggregate ecosystems (Fig. 1f). Because 
the CRIB does not consider range expansions to new locations, it 
assesses the climate risk to the in situ persistence of species and the 
biotic intactness of their ecosystems; it represents a baseline that can 
be flexibly updated when confronted with new data and knowledge. 
See the Supplementary Information, ‘Calculation of the indices’, for 
the full methodology and an example; Extended Data Fig. 2 depicts 
the workflow.

Climate vulnerability of marine species
Climate vulnerability varies widely, both spatially and across species. 
The highest vulnerability score found in our analysis (0.92) is for a 
large, long-lived, range-restricted species that is heavily exploited 
and of critical conservation concern: Chinese puffer (Takifugu chi-
nensis), at a highly impacted nearshore site near China under the 
high-emission scenario. The lowest vulnerability score (0.07) is  
for a shorter-lived, vertically migrating, mesopelagic, pan-global 

species, the bluntsnout lanternfish (Myctophum obtusirostre), at 
an offshore site under the low-emission scenario. Across an entire 
species’ distribution, a range-restricted species of critical conserva-
tion concern, the Galapagos damselfish (Asurina eupalama), has 
the highest vulnerability (0.75; Fig. 2a), and the jewel fire squid, 
Pterygioteuthis gemmate, has the lowest (0.17). Substantial differ-
ences in vulnerability are seen between higher taxa (Fig. 2b).

Climate risk for marine species
The emission scenario affects species’ risk by modifying their antic-
ipated exposure to hazardous climate change. When vulnerability 
scores are spatially aggregated across each species’ range under the 
high-emission scenario, 2.7% of the assessed species are at critical 
risk, 84% are high, 13% are moderate and virtually none (<1%) are 
at negligible risk (Fig. 2a) by the year 2100. In contrast, 1.3% of the 
assessed species under the low-emission scenario are at critical risk, 
54% are high, 44% are moderate and 0.3% are at negligible risk by 
2100. The benefits of emission mitigation are near-universal, with 
98.2% of species less vulnerable and all species less exposed to haz-
ardous climates (Supplementary Figs. 53 and 54). The few species 
that become more vulnerable under emission mitigation tend to be 
broadly distributed but have highly fragmented and restricted dis-
tributions (≤2% of the global area).

Despite the ubiquitous benefits of emission reduction, rela-
tive gains differ among taxa (Fig. 2b). Among animals, molluscs, 
ray-finned fishes (Actinopterygii) and cephalopods benefit the 
most from mitigation. Numerous species within these groups are 
targeted by fisheries, suggesting that fisheries may benefit inordi-
nately from mitigation, as also suggested by marine ecosystem mod-
els8. Irrespective of emissions, 27% of species are classified as high 
or critical risk in their sensitivity and 47% in their adaptivity to cli-
mate impacts (Fig. 2c). In contrast, under low emissions, a minority 
of species (27%) are classified as highly or critically at risk of expo-
sure to projected climate impacts, whereas under high emissions, 
the vast majority (98%) are at high or critical exposure risk (Fig. 2c).

While variation in climate vulnerability is the greatest among 
species (taxonomic coefficient of variation, 16%), there is also  
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Fig. 1 | Spatially explicit assessment of climate vulnerability and risk for species and ecosystems globally. a–e, Within each grid cell (1° × 1° here) across 
the native geographic distribution of a species (a), 12 standardized climate indices are calculated (b) and used to define the three dimensions of climate 
vulnerability (c): present-day sensitivity (blue), projected future exposure (red) and innate adaptivity (yellow). The dimensions are used to calculate 
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substantial variation across the geographic distribution of each spe-
cies (average spatial coefficient of variation across species, 6%). For 
instance, with mitigation, the climate risk for shortfin mako sharks 
(Isurus oxyrinchus) ranges from negligible in 25% of its distribution 
to high or critical across 3% of its native distribution (vulnerabil-
ity range, 0.11–0.8; Supplementary Fig. 40). This result highlights 
the importance of resolving both taxonomic and spatial aspects of 
climate vulnerability and risk to guide conservation. On average, 
species are at high or critical climate risk across 85% (s.d. = 27%) of 
their geographic distributions under a high-emission scenario and 
across 52% (s.d. = 38%) under a low-emission scenario by 2100.

Climate risk across marine ecosystems
The proportion of species at high or critical risk varies among loca-
tions, taxa and emission scenarios (Fig. 3). Ecosystems are more at 
risk in the tropics (30° S–30° N), in some polar regions (>60° N or S) 
and closer to the shore (Fig. 3a–e). A disproportionately large num-
ber (>75%) of shark, ray and mammal species are at high or critical 
climate risk at low latitudes (~25° N and S), with few areas escaping 
exposure (Fig. 3c,d). Far more species are at risk in nearshore and 
low-latitude ecosystems, where cumulative biodiversity peaks28,29 
(Fig. 3e). Under high emissions, 9% of the ocean contains ecosys-
tems with at least 50% of their constituent species at high or critical 
climate risk, and 1% contains ecosystems where almost all (>95%) 
species are at high or critical risk, including some of the most bio-
diverse ecosystems28,29 in the Gulf of Thailand, the Coral Triangle, 
northern Australia, the Red Sea, the Persian Gulf, nearshore India, 

the Caribbean and some Pacific islands (Fig. 3). The recurring high 
climate risk of nearshore ecosystems is notable, as they have also 
been identified as high-priority areas for biodiversity conserva-
tion and food provision30 and are disproportionately subjected to 
non-climatic stressors30,31. Nearshore ecosystems presently support 
96% of the global fishery catch yet contain the most overexploited 
fisheries30. The risk reduction achievable through emission mitiga-
tion tends to be the greatest for these regions (Fig. 3f). Under high 
emissions, there are very few climate refugia where many (>75%) 
species are at negligible climate risk (Fig. 3g). Climate refugia are 
mainly located in mid- and high-latitude offshore ecosystems  
(~40–65° N or S), predominantly in the southern hemisphere, but 
they are far more extensive under mitigation.

Top predators are disproportionately climate-vulnerable relative 
to species at lower trophic levels (TLs) (Methods), across most of 
the global ocean (Fig. 3h). Under high emissions, 63% of grid cells 
have high-TL species that are more climate-vulnerable than those 
lower in the food web; when considering only statistically signifi-
cant effects (71% of cells), the proportion increases to 69%.

The increasing risk at higher TLs is driven by differences in 
life-history characteristics, size structure and metabolic costs, 
geographic range size and fragmentation, and exposure to human 
impacts and associated extinction risk of species. The variability of 
climate vulnerability scores among species also increases with tro-
phic position, suggesting that in addition to creating asymmetric 
impacts across marine food webs, climate change may increasingly 
compromise their overall stability.
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Cumulatively, these results suggest that climate change dis-
proportionately affects top predators under high emissions and is 
likely to fundamentally alter the structure of marine ecosystems, 
with consequences for energy transfer, ecosystem stability and eco-
system functioning. High-TL species represent a small fraction of 

total biomass but include some of the most economically valuable 
species32, and declines in their abundance can have drastic reper-
cussions for ecosystems33 and human societies. However, with sub-
stantial emission mitigation, the average global effect of TL on risk 
declines significantly from 0.01 to 0.008 (P < 0.0001), implying a 
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reduced differential vulnerability for higher TLs. This indicates that 
emission mitigation reduces the likelihood of widespread ecosystem 
restructuring and enhances resilience to climate change relative to 
the high-emission scenario.

Climate risk and conservation planning
To evaluate how geographic variation in climate risk aligns with con-
servation priorities, we calculated three aggregate species metrics 
relevant to conservation planning34–36: aggregated range-size rarity 
(RSRa) (Fig. 4a) to assess biodiversity and endemism35,37, extinction 
risk (ERa) (Fig. 4b) and climate risk (Fig. 4c). Intersecting locations 
with the highest RSRa, ERa and climate risk identifies priority eco-
systems that are in urgent need of conservation globally (Fig. 4d).

Aggregate climate risk is positively associated with RSRa and ERa 
under both emission scenarios (r = 0.89–0.95). Under high emis-
sions, 8% of locations have both high aggregate climate risk and 
RSRa, while 15% have low climate risk and high RSRa; 8% of spe-
cies (n = 610) have both high extinction (vulnerable, endangered 
or critically endangered) and climate risk (high or critical) scores, 
and 0.4% (n = 28) of species are critically endangered and at critical 
climate risk. Globally, all three metrics intersect across 10% of the 
ocean; they occur across most latitudes and oceans (~70° N to S) 
but are primarily concentrated close to coastlines and islands, where 
biodiversity and endemism are elevated and where human impacts 
such as fishing are also higher4.

Climate risk and socio-economic equity
We calculated the climate risk for fished species within the EEZs of 
145 maritime countries and seven high-seas areas beyond national 
jurisdiction under both emission scenarios to 2100 (Fig. 5). With 
high emissions, 15% of countries (22) have >90% of all fished  

species at climate risk (high or critical) in their EEZs, with Asian 
countries projected to be disproportionately impacted (17 of 28 
countries; 61%). Conversely, several countries, including many in 
Europe, have a lower proportion of fished species at risk, includ-
ing Iceland (8%), Norway (18%) and Denmark (20%). On aver-
age, countries in Asia have the highest proportion of fished species 
at high or critical climate risk (86%), followed by those in North 
America (77%), Oceania (73%) and Africa (71%). For high-seas 
areas, the greatest proportions of high or critical risk species are 
found in the Indian (56%) and North Pacific oceans (42%), while 
the lowest were in the Arctic (1%) and North Atlantic (12%) oceans.

Emission mitigation resulted in fewer fished species at climate 
risk for all countries, but the reduction is disproportionate for many 
low-income countries, such as Bangladesh (−73%), Palau (−70%), 
Saint Vincent and the Grenadines (−70%), Micronesia (−69%) 
and Tanzania (−68%). Regionally, the average risk reduction is the 
greatest for countries in Oceania (−52%), North America (48%), 
Asia (41%) and South America (−35%) and the least for those in 
Europe (−14%).

To explore the possible impacts of climate risk on socio-economic 
inequalities among countries, we evaluated the relationships 
between the proportion of fished species at climate risk for each 
nation and those countries’ wealth, food debt and fisheries depen-
dence38. Low-income countries, which tend to have lower levels of 
wealth and food security and a higher dependency on fisheries, and 
which contribute the least to global CO2 emissions, have systemati-
cally higher climate risks to their fisheries under the high-emission 
scenario (Fig. 6a–d) but also experience the greatest risk reduction 
through mitigation (Fig. 6e–h). Low-income countries are also sub-
jected to many non-climatic stressors4, probably compounding their 
susceptibility to climate impacts. These results are consistent with 
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ecosystem models that suggest low-income countries will probably 
experience the largest climate-driven declines in their fisheries bio-
mass8 and agriculture production38 to 2100. While most low-income 
countries have adopted ambitious nationally determined contribu-
tions to climate mitigation39, the excessive climate risk they face 
threatens to widen already substantial socio-economic equity gaps.

Caveats and future directions
Climate impacts are pervasive and complex, requiring any climate 
risk framework to make assumptions. First, in the absence of more 
comprehensive information and data, we assume that the three 
dimensions of risk and 12 underlying indices capture generalized 
climate impacts across all marine species with varying traits, habi-
tat preferences, physiologies and life histories (for an example, see 
ref. 40). Second, while our analysis follows convention15–19 in using 

surface temperature as the primary measure of climate change, 
additional factors may alter species’ responses, including changes 
in dissolved oxygen and pH, mixing and nutrient flux, differences 
in rates of warming across depths, and modified biotic interac-
tions. While species’ responses to those factors are presently less 
well understood, our climate risk framework represents a baseline 
on which to build and improve using new data and knowledge. 
Third, our risk metric focuses on species exposure in their exist-
ing (in situ) geographic ranges to potentially unsuitable conditions 
and does not account for range expansions, which represent a key 
aspect of species adaptivity (Supplementary Information, ‘Projected 
loss of suitable thermal habitat’); it thus represents spatially vary-
ing risk to a species in terms of climate-driven extirpation for each 
part of its range. Finally, our framework depends heavily on spe-
cies distribution models, which constrains the spatial resolution of 
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our analyses and may affect the estimation of some indices, such 
as geographic range extent and fragmentation; the development 
of higher-resolution species distribution models would alleviate  
this issue.

Conservation implications
Complementing the IUCN Red List of species extinction risk27, the 
differential climate risk of species presented here could help pri-
oritize conservation measures to reduce extinctions, enable adap-
tation and build resilience. Our analysis suggests that the climate 
risk for marine life varies significantly across species and within the 
geographic distribution of each species, emphasizing the critical 
importance of evaluating this risk in both ecological and geographi-
cal dimensions. In a nutshell, species’ intrinsic characteristics more 
strongly determine their climate risk with low future emissions, but 
geographical variation and where species live become increasingly 
important under high emissions. As climate change intensifies, 
strategies that account for spatial variation in climate risk across 
individual species distributions could become increasingly critical 
to the continued effectiveness of conservation. In this context, the 
geographic patterns of ecosystem climate risk (Fig. 3) could be help-
ful to local, national and regional marine spatial planning, including 
current plans to protect at least 30% of the ocean by 203041. The 
climate risk scores could be used to identify priority areas (Fig. 4) 
where minimizing interacting pressures (for example, pollution or 
fishing) is crucial, assess the resilience of current marine protected 
area coverage to climate change, or design protection networks that 
encompass the full range of climate risk, including hotspots and 
refugia2,9,42. Likewise, climate vulnerability and risk indicators can 
also support international evidence-based policy processes, such as 
the Convention on Biological Diversity post-2020 global biodiver-
sity framework41.

In addition to the global results we report, our framework can 
evaluate climate risk at any user-specified spatial domain resolution, 
using any data source to enhance its application in varied manage-
ment or conservation settings. This flexibility and scalability can 
facilitate climate adaptation initiatives in, for instance, fisheries 
management11,43 and aid in understanding the climate risk for global 
and transboundary fish stocks44. In this context, high-resolution cli-
mate layers and regionally relevant input datasets have been used 
to evaluate climate risk for fisheries at a regional management scale 
across the Northwest Atlantic Ocean45.

Overall, our results indicate that the climate risk for marine life 
is strongly dependent on the magnitude of future emissions. With 
continued high emissions, by 2100, most species (87%) are pro-
jected to experience a high risk of adverse climate impacts and are at 
risk across most (85%) of their geographic distributions. Upper-TL 
predators are significantly more vulnerable than basal species and 
thus experience double-jeopardy, as they are disproportionately tar-
geted by fisheries46 and are associated with greater extinction risk47. 
Nearshore ecosystems that are priority areas of biodiversity conser-
vation and food provision30 are a concern, as they experience greater 
climate risk on average and multiple non-climate stressors3,4,31.

Under high emissions, the proportion of high-risk fished spe-
cies is systematically higher for low-income countries that are more 
dependent on fisheries38, contribute the least to climate emissions 
and do the most to mitigate them39. Cumulatively, these results sug-
gest that unabated emissions may hinder progress towards meet-
ing several of the United Nations Sustainable Development Goals 
(SDGs) under Agenda 2030, including those aimed at reducing hun-
ger (SDG2); improving health, well-being (SDG3) and economic 
inequalities (SDG10); and avoiding adverse ecosystem effects due to 
climate change (SDG13 and SDG14). However, under the emission 
mitigation scenario, the climate risk to marine life is universally less 
severe, with the greatest risk reduction for low-income countries. 
This finding emphasizes the critical importance of socio-economic 

development pathways for marine ecosystems’ health and sustain-
ability and supports strengthening international cooperation and 
financing where needed (SDG17). Our results and new assessment 
framework have the potential to help inform national and interna-
tional initiatives to conserve biodiversity2,48; design, monitor and 
maintain protected areas9,10; and ensure that marine ecosystems are 
sustainably managed in this era of rapid climate change.
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methods
Identification of climate indices. The 12 climate indices, their rationales, the 
data sources used and supporting references are listed in Supplementary Table 
1. The climate indices were selected to be grounded in ecological theory, widely 
accepted and validated through peer review and publication. The indices were 
restricted to those where the climate change impact pathways on species were 
generalized across them, and to maximize their unique information content 
and minimize redundancies; their uniqueness was evaluated by testing their 
collinearity (‘Collinearity of climate indices’ in the Supplementary Information 
and Extended Data Fig. 3). Parsimony was also critical to avoid pseudoreplication: 
indices that were easy to interpret and calculate were given priority. These 
various indices represent a combined approach to vulnerability assessment17: 
this approach integrates trait-based, correlative and mechanistic information 
and incorporates abiotic, biotic and human pressures acting across multiple 
biological organization levels from species to ecosystems. The 12 indices are fully 
described in the Supplementary Information (‘Calculation of the indices’) and 
listed in Supplementary Table 1. The climate sensitivity indices included species’ 
thermal safety margins18,22,49,50, vertical habitat variability and use51–54, conservation 
status55 and cumulative impacts4,31,56–61. The climate exposure indices were based 
on ensemble climate projections and included the timing of climate emergence 
from species’ thermal niches23,62–64, the extent of suitable thermal habitat loss65–67, 
climate-related ecosystem disruption23,68–71 and the projected climate velocity72–74. 
The adaptivity indices included the species’ geographic range extent51,72,74–78, 
geographic habitat fragmentation19,79–83, maximum body length17,19,81,84–88 and 
historical thermal habitat variability and use19,89–92.

Data. All data sources are listed in Supplementary Table 2.

Taxonomic overview. Species that did not inhabit the upper 100 m of the ocean 
were excluded from the analyses, as were those for which the maximum depth of 
occurrence exceeded 1,000 m; surface temperatures could weakly define the climate 
risk of these species. Sensitivity analyses were used to validate these thresholds 
(Supplementary Fig. 41). We also excluded seabird species from the analyses, 
as they spend a minority of their time in surface waters. We excluded species 
with large freshwater distributions or that spend most of their time in freshwater 
habitats (for example, sturgeons, salmons, shads and eels).

The assessed species were primarily animals (n = 24,617 species; 98.6%) but 
also included marine plants (n = 230; 0.9%), chromists (n = 72; 0.3%), protozoans 
(n = 48; 0.2%) and bacteria (n = 8; <0.1%) (Extended Data Fig. 1a). While marine 
biodiversity sampling in general is incomplete, the spatial pattern of assessed 
species richness herein reflects the global distribution of marine biodiversity28, 
peaking at low-to-middle latitudes (0–35° N and S), along coastlines and in known 
hotspots (Extended Data Fig. 1b).

Native geographic distributions. Present-day native geographic distributions for 
marine species were predicted from AquaMaps21 on a 0.5° global grid using 
environmental niche models. The models predict the probability of occurrence 
for each species as a function of bathymetry, upper ocean temperature, salinity, 
primary production and the presence of and proximity to sea ice and coasts. 
AquaMaps estimates have been validated using independent survey observations93 
and evaluated against alternative methodologies and independent datasets94. The 
native geographic distributions for each species were statistically rescaled to a 1° 
grid using bilinear interpolation to ensure that they were compatible with the input 
climate projections.

Thermal niches. The upper and lower thermal preferences and tolerances of marine 
species were obtained from the AquaMaps niche models21. The upper-temperature 
tolerance values represent the species’ realized, rather than fundamental, upper 
thermal tolerances. To evaluate the veracity of the species’ upper thermal 
tolerances in AquaMaps, we compared the upper thermal tolerances reported in 
AquaMaps against those of matching species that were available in peer-reviewed 
databases. In all instances, the AquaMaps realized upper thermal tolerances were 
positively correlated with the upper thermal tolerances in the published databases 
(r = 0.8–0.88; Supplementary Fig. 2). As expected, the fundamental tolerances were 
generally higher than the realized tolerances in AquaMaps50.

Maximum body lengths. The maximum body size of each species was estimated 
from the FishBase95 and SeaLifeBase96 databases. From FishBase, length–length 
relationships were used to calculate maximum lengths in standard units of total 
length. To validate the length records, the largest maximum lengths were examined 
to find and exclude those that are not plausible for each genus. From SeaLifeBase, 
the type of measurement used to assess maximum total lengths for invertebrates 
depended on their taxonomy. Total length was defined by the shell length and body 
length for gastropods, bivalves and some decapods. Total length was determined 
by mantle length for cephalopods, carapace length for decapods and shell height 
for some gastropods. The lengths (total length, mantle length, carapace length 
and shell height) were then compared, and the larger lengths were used to update 
the maximum lengths. Species with missing body length values (n = 16,073) 
were imputed using multiple imputations by chained equations97, a common and 

recognized approach for estimating diverse types of missing data18,98. Refer to the 
Supplementary Information, ‘Imputation of missing data’, for the complete details 
of the imputation procedure and sensitivity analyses.

Vertical habitat. The maximum depth of occupancy and vertical habitat range 
for each species were retrieved from AquaMaps21, SeaLifeBase96 and FishBase95. 
The maximum depth of occupancy and vertical habitat range were truncated by 
the maximum bathymetry present in each grid cell across each species’ native 
geographic distribution.

Trophic position. The TLs for each species were retrieved from FishBase95 and 
SeaLifeBase96 or entered manually for 5,686 species (23%). The TLs of primary 
producers not available in FishBase or SeaLifeBase were set at 1, and those of 
zooplankton were set at 2. Grid cells where the resident species spanned <1 TL 
were omitted from the analysis of variation in climate vulnerability with TL.

Conservation status. The global conservation status of species was obtained from 
the IUCN Red List of Threatened Species27. The Red List places species into 
categories of extinction risk according to several criteria, including but not limited 
to their absolute population size, their trend in abundance, their metapopulation 
structure, the extent of occurrence and demographic factors. Red Listed species 
were associated with the AquaMaps21, FishBase95 and SeaLifeBase96 databases 
using fuzzy string-matching species taxonomies (Supplementary Information, 
‘Fuzzy matching species traits’). Species with missing assessments or that were 
data deficient (n = 18,438) were given a status of Least Concern. Refer to the 
Supplementary Information, ‘Missing data’, for the complete details of the analyses 
of missing observations, the approach to gap-filling them and the associated 
sensitivity analyses.

Environmental data. Per almost all climate change vulnerability analyses15–19,99, 
sea surface temperature (SST) was used as the central metric of climate change; it 
has high spatio-temporal availability, and its effects on species are generally better 
understood relative to other climate variables (such as oxygen and pH). Daily 
SST estimates were obtained from the US National Oceanic and Atmospheric 
Administration 0.25° daily Optimum Interpolation Sea Surface Temperature 
dataset100. This temperature dataset has been available globally since 1981 at a 
spatial resolution of 4 km2. The SST values were statistically rescaled to a global 1° 
grid using bilinear interpolation.

A multivariate index of cumulative human impacts on ocean ecosystems31,59 
integrates 17 global anthropogenic drivers of ecological change at a global 1 km2 
native resolution. The human impact values were statistically rescaled to a global 1° 
grid using bilinear interpolation.

Climate projections. An ensemble of monthly SST (°C) projections (1850–2100) 
was obtained from 12 published global climate models or Earth system models 
(ESMs) within the Coupled Model Intercomparison Project Phase 6 (CMIP6) 
archive (Supplementary Table 3). The models we used span a broad range of 
the projections of SST within the CMIP6 model set. SST projections were made 
under two contrasting IPCC shared socio-economic pathway (SSP) scenarios 
representing alternative socio-economic developments. SSP5-8.5 (fossil-fuelled 
development, ‘taking the highway’) represents continued fossil fuel development, 
and SSP1-2.6 (sustainability, ‘taking the green road) represents an increase  
in sustainable development101. All projections were regridded onto a regular  
global 1° grid.

Analyses. Design principles. The climate risk framework incorporated several 
key features that are often required in applied conservation and management 
settings. First, it is spatially explicit. Second, it evaluates relative vulnerability on 
a standardized, intuitive scale and translates it into absolute risk categories. Third, 
it uses publicly available quantitative data that are well-validated, thus ensuring 
reproducibility. Fourth, it can be flexibly implemented at varying spatial scales and 
in different biomes and can accommodate different types of information. Fifth, it is 
comprehensive, evaluating all dimensions that define vulnerability and risk14 using 
multiple assessment types (for example, trait-based, mechanistic and correlative)17. 
Sixth, it evaluates the statistical uncertainty (variability) associated with 
vulnerability. Seventh, it evaluates the impacts of projected future climate changes 
on species to explore mitigation measures. Finally, it operates hierarchically, 
maximizing its flexibility and information content (Fig. 1).

Calculation of indices. The climate indices were calculated or obtained in their 
native units. Each index was defined by the focal species’ traits, calculated from 
environmental or ecological data on a geographic grid across the native geographic 
distribution of the focal species and/or a mix of the two, creating indices that 
were both taxonomically (for each species) and geographically (for each grid cell) 
explicit.

Standardizations ensured that the 12 climate indices were comparable on a 
standardized scale (range 0–1), ecologically grounded, and reproducible in future 
studies and over different geographic domains (for example, regional), spatial 
resolutions and future exposure horizons with minimal loss of information 
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(Supplementary Information, ‘Calculation of the indices’). Reference values and 
scaling functions were used to meet these criteria. The reference values were 
selected using established guidelines such as spatial or taxonomic comparison 
against the global maximum4,102. The scaling functions described how the scaled 
indices varied as their unscaled analogues increased. The indices were scaled using 
standard approaches (for example, log10), by expression as a proportion of a global 
or theoretical maximum (for example, percentage), or using rectangular hyperbolic 
functions (for example, saturating hyperbola, decelerating curve and asymptotic 
regression). Rectangular hyperbolic functions are ubiquitous in biology103 and have 
been used to describe various biological phenomena, including the reaction speed 
of enzymes, the nature of predator–prey interactions and ecosystem stability103. 
We use the rectangular hyperbolic function described by the exponential equation 
due to its wide use and ease of interpretation to standardize and normalize the 
climate indices (Supplementary Fig. 3). The Supplementary Information section 
‘Calculation of the indices’ describes the equations and parameters used to 
normalize all 12 climate indices, while the Supplementary Information section 
‘Quality control and sensitivity analyses’ evaluates the impacts of different 
standardizations on the calculation of vulnerability (Supplementary Figs. 45–47)

Spatially explicit climate vulnerability of species. Following the sensitivity 
analyses, our analysis was restricted to species and cells containing all 12 indices 
(Supplementary Fig. 42) and with less than 10% missing grid cells across their 
native geographic distributions (Supplementary Fig. 43). For each species within 
each grid cell across its geographic distribution that contained sufficient data, 
sensitivity, exposure and adaptivity were each calculated as the mean of the four 
indices that define them. The standard deviation of the vulnerability dimensions 
provided an estimate of their statistical uncertainty and was propagated forwards 
through the subsequent vulnerability calculations using inverse variance weighting 
as described below. Vulnerability was calculated from sensitivity, exposure and 
adaptivity, while statistically accounting for both the variability and the uncertainty 
associated with the indices of climate exposure derived from ensemble climate 
projections (Supplementary Information, ‘Calculating climate vulnerability’).

The uncertainty associated with the model-projected climate exposure of 
species was statistically accounted for through discounting. Discounting is 
common in economics and has been used to develop the ocean health index4 to 
account for the greater uncertainty associated with unknown future states. Its use 
in the vulnerability estimation is analogous: the future exposures of species to 
climate change, estimated from ESM projections, are less well resolved than are 
their present-day sensitivities or innate adaptive capacities. Our confidence in the 
reliability of the projected exposure indices scales with the length of the climate 
projection and the number of ensemble projections. Accordingly, these factors 
define a discount rate ∂. Exposure indices derived from single ESMs that make 
longer-term climate projections are generally less reliable8,104–106 and are thus more 
heavily discounted. Those derived from a larger ensemble of ESMs that make 
shorter-term projections are perceived as more reliable and are discounted less. 
The discount rate was calculated as

∂ =
Years
100θ

+
Models
−25θ

+ 0.026, (1)

where Years is the number of years in the climate projection, Models is the number 
of climate projections in the ensemble and θ is a scaling factor set to 40. Under this 
derivation, the discount rate is maximized at 5% when projections are made for 
≥100 years from a single projection and is minimized at 0% when projections are 
made for <5 years from >19 projections. Our study evaluated climate projections 
from 12 models over 80 years, yielding a discount rate of 3.1%. Discounts applied 
to exposure are credited to present-day sensitivity, such that the maximum total 
adjustment is 10%, to conserve the vulnerability scaling to between zero and one. 
For each species within each grid cell across its geographic distribution, the discount 
rate was applied to the estimated exposure and sensitivity estimates as follows:

⌣

E
s,c

= [(1 − ∂)(Es,c)], (2)

⌣

S
s,c

= [(1 + ∂)(Ss.c)], (3)

where ⌣S
s,c

 and ⌣E
s,c

 are the discounted sensitivity and exposure estimates for species s 
within cell c. Following this, the vulnerability was calculated as a weighted average 
of adaptivity and discounted sensitivity and exposure as

Vs,c =

[

⌣

S
s,c

×ωSs,c
] [

⌣

E
s,c

×ωEs,c
]

+ [(1 − ACs,c) × ωACs,c]

ωSs,c + ωEs,c + ωACs,c
, (4)

where Vs,c is the vulnerability and ACs,c is the adaptivity for species s within cell c, 
and ωSs,c, ωEs,c and ωACs,c are the statistical reliability weights for the estimated 
sensitivity, exposure and adaptivity, calculated from their scaled variances. The 
weights for the estimated sensitivities were calculated as the inverse of their 
coefficients of variation:

ωSs,c =
(

σSs,c
μSs,c

)

−1
(5)

where

μSs,c =
1
n

n
∑

i=1
Ss,c,i (6)

and

σSs,c =

√

∑n
i=1 (Ss,c,i − μSs,c)2

NSs,c
(7)

where σSs,c and μSs,c are the standard deviation and mean, respectively, of the four 
indices, i, that define sensitivity for species s within cell c. NSs,c is the number of 
climate indices, i, that define sensitivity for species s within cell c.

Spatially inexplicit climate vulnerability of species. The vulnerability for each species 
(Vs) was calculated as an inverse variance-weighted mean of the vulnerabilities in 
each grid cell across its geographic distribution:

Vs =

∑n
c=1 ωVs,c Vs,c
∑n

c=1 ωVs,c
(8)

while their variance-weighted standard deviations were calculated as

σVs =

√

√

√

√

v1
v21 − v2

N
∑

c=1
ωVs,c(Vs,c − μVs,c)2 (9)

where

V1 =

N
∑

c=1
ωVs,c (10)

and

V2 =

N
∑

c=1
ωV2

s,c (11)

and

ωVs,c =

(

σVs,c

μVs,c

)

−1
(12)

Under this derivation, greater statistical weighting is given to vulnerability 
estimates in grid cells where their variance (for example, the spread of the indices 
used to calculate them) is lower and vice versa. Species estimates will be more 
variable when the vulnerability is more dissimilar in the grid cells that comprise its 
geographic distribution and vice versa.

Climate risk for species and ecosystems. We defined climate risk thresholds to 
translate climate vulnerability into risk categories according to the ecological 
interpretation of each of the 12 climate indices (Supplementary Table 4). The risk 
thresholds are defined in their native units and propagated through the analysis, 
preserving their meaning and interpretation. This approach using thresholds 
is comparable to the definition of extinction risk used by the IUCN Red List of 
species27 and the reasons for concern framework adopted to define climate risk 
by the IPCC14,25,26. It allows the relative vulnerability of species and communities 
to be translated into absolute risk categories using transparent and, where 
possible, empirically supported approaches107–109. The details of the risk thresholds 
used to determine climate risk for species and their justifications are listed in 
Supplementary Table 4.

Ecosystem patterns of climate risk. In each 1° cell, we calculated the slope (βTL) of 
a weighted linear regression between the local vulnerability of a species and its 
TL. The magnitudes and directions of βTL capture systematic differences between 
species’ vulnerability given their position in the food web. The magnitude of βTL 
quantifies how rapidly vulnerability changes when moving up one TL in the food 
web. The direction of βTL quantifies which food web components are the most 
vulnerable: positive values indicate that high-TL species (such as top predators) 
are more vulnerable than low (such as primary producers) and vice versa. 
Sensitivity analyses were undertaken, omitting primary producers (TL = 1; n = 302 
species) or all plankton (TL < 2.5; n = 1,095 species) or testing alternative model 
configurations; our results were not significantly changed by these sensitivity 
analyses (Supplementary Fig. 50).

Exploitation status. Exploited species were identified as those that have fisheries 
landings data reported in the United Nations Food and Agricultural Organization 
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global capture production database or the Northwest Atlantic Fisheries 
Organization fisheries statistics database, 2000 and 2021110. For each exploited 
species, we added all possible synonyms contained within the World Register of 
Marine Species taxonomic database111.

Aggregate ecosystem indices. In each grid cell across their geographic distributions, 
each species’ RSR was calculated as

RSRs,c =
As,c

As
(13)

where As,c is the surface area for species s in grid cell c, and As is the surface area 
comprising the geographic distribution of species s. Following this, RSRa was 
calculated in each grid cell as the sum of RSRs for all species that live there. ERa was 
calculated as the sum of the standardized IUCN Red List statuses for all species 
in each grid cell. Aggregate climate risk was similarly calculated as the sum of the 
standardized climate vulnerability scores for all species in each grid cell. Under 
these derivations, ecosystems where all species have low scores for extinction or 
climate risk or for RSRa receive low aggregate scores, and scores increase with the 
number of species and their risk or RSRa values. The aggregated scores thus account 
for the number of species (biodiversity) and the cumulative risk of ecosystems.

Climate risk across maritime countries. We calculated the fraction of exploited 
marine species that fall within different climate risk categories and that are resident 
within the EEZs of maritime countries under both emission scenarios. Exploited 
species were identified as those reported in landings databases maintained by the 
United Nations Food and Agricultural Organization or the Northwest Atlantic 
Fisheries Organization. We then evaluated the climate risk of fisheries for different 
countries in relation to their social and economic status indicators, including total 
per capita wealth (US$ per person; 1995–2014)112, per capita food deficit (kcal per 
person per day; 1999–2016)113 and fishery dependency8.

Quality control and sensitivity analyses. Extensive sensitivity analyses were 
undertaken (as described in the Supplementary Information, ‘Quality control and 
sensitivity analyses’) to inform our determination of the appropriate species and data 
to include (Supplementary Figs. 41–45), the acceptable levels of data missingness 
(Supplementary Fig. 43), the impact of the standardizations on the calculations 
(Supplementary Figs. 44–46), the veracity of the imputations (Supplementary Fig. 
47), the collinearity of the indices (Extended Data Fig. 3) and the definition of 
species’ native geographic distributions (Supplementary Figs. 48 and 49).

Data availability
All datasets used in this paper are described and archived at the publicly available 
sources listed in Supplementary Table 2. Species vulnerability scores are available 
through the Dryad digital repository114.

Code availability
Statistical analyses were conducted using the R statistical computing platform115, 
and the code is available upon request to the corresponding author.
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Extended Data Fig. 1 | Data availability. a) The pie chart displays the proportion of assessed species across kingdoms. Colours show the numbers of 
species within each animal phylum and shading within the bars shows the number of species in each taxonomic class. b) Spatial distribution in the number 
of assessed species. Colours depict the number of species assessed per 1 × 1° cell. The gray shaded area in the right margin shows the total number of 
species assessed along latitude. The red line and axis are the average species richness of all marine taxa by latitude reported in Tittensor et al.180.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | General overview of the steps in estimating the climate vulnerability and risk for species and ecosystems. Thick arrow and 
numbers denote the sequence of analyses used to estimate climate risk from the input data layers. Red depicts the sensitivity and quality-control analyses 
that were completed.
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Extended Data Fig. 3 | Correlations between climate indices used to calculate climate vulnerability and risk. Colours and numbers are the correlations 
between climate indices calculated for each species. Colour shading and text are the direction and strength of the relationships: red are positive and blue 
negative correlations.

NATuRE CLimATE CHANGE | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange

	A climate risk index for marine life
	A climate index for marine life
	Climate vulnerability of marine species
	Climate risk for marine species
	Climate risk across marine ecosystems
	Climate risk and conservation planning
	Climate risk and socio-economic equity
	Caveats and future directions
	Conservation implications
	Online content
	Fig. 1 Spatially explicit assessment of climate vulnerability and risk for species and ecosystems globally.
	Fig. 2 Climate vulnerability and risk for species.
	Fig. 3 Climate risk patterns across marine ecosystems.
	Fig. 4 Climate risk and conservation planning.
	Fig. 5 Climate risk for fisheries among maritime countries.
	Fig. 6 Climate risk and socio-economic equity.
	Extended Data Fig. 1 Data availability.
	Extended Data Fig. 2 General overview of the steps in estimating the climate vulnerability and risk for species and ecosystems.
	Extended Data Fig. 3 Correlations between climate indices used to calculate climate vulnerability and risk.




